This paper investigates the role of composite filters in reducing the search time for 3D model based object recognition. When one moves from 2D to 3D, one is faced with a huge amount of information to deal with. The composite filter combined with a multistage scheme is developed for processing this huge information. The design scheme for the composite filters is also elaborated. The procedures discussed in this paper demonstrate how detection of these various model images might help formulate a new metric for recognition performance.
In this paper, a novel metric is defined that will allow one to compare the performance of 3-D pattern recognition systems. Any real object is inherently, three-dimensional. Therefore, any input object for an automated target recognition system should be ideally compared to the 3-D information about the object. The proposed metric captures the essence of such comparisons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.