An early and accurate diagnosis of Alzheimer's disease (AD) has been progressively attracting more attention in recent years. One of the main problems of AD is the loss of language skills. This paper presents a computational framework for classifying AD patients compared to healthy control subjects using information from spontaneous speech signals. Spontaneous speech data are obtained from 30 AD patients and 30 healthy controls. Because of the nonlinear and dynamic nature of speech signals, higher order spectral features (specifically bispectrum) were used for analysis. Four classifiers (k-Nearest Neighbor, Support Vector Machine, Naïve Bayes and Decision tree) were used to classify subjects into three different levels of AD and healthy group based on their performance in terms of the HOS-based features. Tenfold crossvalidation method was used to test the reliability of the classifier results. The results showed that the proposed method had a good potential in AD diagnosis. The proposed method was also able to diagnose the earliest stage of AD with high accuracy. The method has the great advantage of being non-invasive, cost-effective, and associated with no side effects. Therefore, the proposed method can be a spontaneous speech directed test for pre-clinical evaluation of AD diagnosis.
This high accuracy index, which is obtained using just three features, is higher than those obtained by several previous works in which more nonlinear features were employed. Also, our method is fast and easy and may be helpful in different applications of automatic seizure detection such as online epileptic seizure detection.
In the dynamics analysis of heart rate, the complexity of visibility graphs (VGs) is seen as a sign of short term variability in signals. The present study was conducted to investigate the possible impact of meditation on heart rate signals complexity using VG method. In this study, existing heart rate signals in Physionet database were used. The dynamics of the signals were then studied both before and during meditation by examining the complexity of VGs using graph index complexity (GIC). Generally, the obtained results showed that the heart rate signals were more complex during meditation. The simple process of calculating the GIC of VG and its adaptability to the chaotic nature of the biological signals can help in estimating the heart rate complexity in meditation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.