This paper introduces an area- and power-efficient approach for compressive recording of cortical signals used in an implantable system prior to transmission. Recent research on compressive sensing has shown promising results for sub-Nyquist sampling of sparse biological signals. Still, any large-scale implementation of this technique faces critical issues caused by the increased hardware intensity. The cost of implementing compressive sensing in a multichannel system in terms of area usage can be significantly higher than a conventional data acquisition system without compression. To tackle this issue, a new multichannel compressive sensing scheme which exploits the spatial sparsity of the signals recorded from the electrodes of the sensor array is proposed. The analysis shows that using this method, the power efficiency is preserved to a great extent while the area overhead is significantly reduced resulting in an improved power-area product. The proposed circuit architecture is implemented in a UMC 0.18 [Formula: see text]m CMOS technology. Extensive performance analysis and design optimization has been done resulting in a low-noise, compact and power-efficient implementation. The results of simulations and subsequent reconstructions show the possibility of recovering fourfold compressed intracranial EEG signals with an SNR as high as 21.8 dB, while consuming 10.5 [Formula: see text]W of power within an effective area of 250 [Formula: see text]m × 250 [Formula: see text]m per channel.
This paper presents a novel approach to acquire multichannel wireless intracranial neural data based on a compressive sensing scheme. The designed circuits are extremely compact and low-power which confirms the relevance of the proposed approach for multichannel high-density neural interfaces. The proposed compression model enables the acquisition system to record from a large number of channels by reducing the transmission power per channel. Our main contributions are the twofold. First, a CMOS compressive sensing system to realize multichannel intracranial neural recording is described. Second, we explain a joint sparse decoding algorithm to recover the multichannel neural data. The idea has been implemented at system as well as circuit levels. The simulation results reveal that the multichannel intracranial neural data can be acquired by compression ratios as high as four.
SUMMARYCompressive sampling (CS) offers bandwidth, power, and memory size reduction compared to conventional (Nyquist) sampling. These are very attractive features for the design of modern complementary metal-oxide semiconductor (CMOS) image sensors, cameras, and camera systems. However, very few integrated circuit (IC) designs based on CS exist because of the missing link between the well-established CS theory on one side, and the practical aspects/effects related to physical IC design on the other side. This paper focuses on the application of compressed image acquisition in CMOS image sensor integrated circuit design. A new CS scheme is proposed, which is suited for hardware implementation in CMOS IC design. All the main physical non-idealities are explained and carefully modeled. Their influences on the acquired image quality are analyzed in the general case and quantified for the case of the proposed CS scheme. The presented methodology can also be used for different CS schemes and as a general guideline in future CS based CMOS image sensor designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.