In this study, a new group method of data handling (GMDH) method, based on adaptive neurofuzzy inference system (ANFIS) structure, called ANFIS-GMDH and its application for diabetes mellitus forecasting is presented. Conventional neurofuzzy GMDH (NF-GMDH) uses radial basis network (RBF) as the partial descriptions. In this study the RBF partial descriptions are replaced with two input ANFIS structures and backpropagation algorithm is chosen for learning this network structure. The Prima Indians diabetes data set is used as training and testing sets which consist of 768 data whereby 268 of them are diagnosed with diabetes. The result of this study will provide solutions to the medical staff in determining whether someone is the diabetes sufferer or not which is much easier rather than currently doing a blood test. The results show that the proposed method performs better than the other models such as multi layer perceptron (MLP), RBF and ANFIS structure.
A spatially-constrained clustering algorithm is presented in this paper. This algorithm is a distributed clustering approach to fine-tune the optimal distances between agents of the system to strengthen the data passing among them using a set of spatial constraints. In fact, this method will increase interconnectivity among agents and clusters, leading to improvement of the overall communicative functionality of the multi-robot system. This strategy will lead to the establishment of loosely-coupled connections among the clusters. These implicit interconnections will mobilize the clusters to receive and transmit information within the multi-agent system. In other words, this algorithm classifies each agent into the clusters with the lowest cost of local communication with its peers. This research demonstrates that the presented decentralized method will actually boost the communicative agility of the swarm by probabilistic proof of the acquired optimality. Hence, the common assumption regarding the full-knowledge of the agents' primary locations has been fully relaxed compared to former methods. Consequently, the algorithm's reliability and efficiency is confirmed. Furthermore, the method's efficacy in passing information will improve the functionality of higher-level swarm operations, such as task assignment and swarm flocking. Analytical investigations and simulated accomplishments, corresponding to highlypopulated swarms, prove the claimed efficiency and coherence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.