The purpose of this study was to describe biomechanical parameters of head, upper and lower body extremities during a straight right punch throw related to performance and injury mechanism. Subjects were eight elite right-handed male (age 20.4 ± 2.1yrs; height 177.4 ± 8.5 cm; mass 70.4 ± 16.8 kg) amateur boxers. 3D motion analysis was used to assess the kinematics of the right side extremities and head. Ensemble averaging of time normalized kinematic parameters was used to have better visual inspection. Results showed a similar pattern between subjects with some considerable variation in some parameters that pointed out to individualized pattern in elite boxers. Investigation of lower body joints kinematics explained boxers throw punch using leg drive. Stretch-shortening cycle detected in the technique implies potential for performance enhancing using plyometrics. Head velocity measured in anterior-posterior and medial-lateral direction would intensify potential head injuries.
Force-Time (F-T) curve variables of the vertical jump are known as contributing factors in jumping height. Experience-related differences might also have impacts on kinetic and kinematic outputs of athletes' jump. The aim of this study was to investigate the correlation between F-T curve variables with jump height (JH) and observe the differences between elite and collegiate basketball players. With institutional ethics approval, 12 elites (24.3±5.9 years, 195.4±23.1 cm, 89.1±15.2 kg, 13.6±2.3 years' experience) and 12 collegiate (21.6±2.5 years, 183.2±6.1 cm, 75.3±9.5 kg, 9.1±1.8 years' experience) male basketball players participated in this study. Correlation between F-T variables-included time, force, velocity, power and modified reactive strength (MRSI)-in the eccentric and concentric phases and JH was studied. Outcomes portrayed that concentric Relative Peak Force (r=0.71), Relative Peak Power (r=0.83), Peak Velocity (r=0.99) and MRSI (r=0.71) in elite players, and concentric Relative Peak Force (r=0.79), Average Power (r=65), Relative Peak Power (r=0.81), Peak Velocity (r=0.98) and MRSI (r=0.83) in collegiate players were significantly correlated with JH. Absolute and relative measures of power and force are shown to have a vital role in jump performance of basketball players. MRSI, which is defined as an explosiveness measurement in athletes, could be accounted as of jump performance criteria. Focusing on selected factors described above in training programs could enhance athlete jump performance, particularly in basketball society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.