Many active sensing applications benefit from measuring, as fast as possible, the polarization state of target reflections. Traditional polarimetry, however, relies on (1) the assumption of field transversality and (2) a given direction of wave propagation. When this is not known, one must regard the field as being three-dimensional, which inherently complicates the polarimetry due to experimental constraints imposed by the planar geometry of detector arrays. We demonstrate a single-shot, Stokes polarimetry approach that alleviates these limitations. The approach is based on the spatial Fourier analysis of the interference between the unknown wave and controlled reference fields.
Optical vortex beams are under considerable scrutiny due to their demonstrated potential for applications ranging from quantum optics to optical communications and from material processing to particle trapping. However, upon interaction with inhomogeneous material systems, their deterministic properties are altered. The way these structured beams are affected by different levels of disturbances is critical for their uses. Here, for the first time, we quantify the degradation of perfect optical vortex beams after their interaction with localized random media. We developed an analytical model that (1) describes how the spatial correlation and the phase variance of disturbance affect the phase distribution across the vortex beams and (2) establishes the regimes of randomness for which the beams maintain the memory of their initial vorticity. Systematic numerical simulations and controlled experiments demonstrate the extent of this memory effect for beams with different vorticity indices.
We introduce the scalar average similarity of an ensemble of randomly polarized states. This global measure is based on the complex degree of mutual polarization between any pair of vector fields in the ensemble. We show that, in the case of fully correlated and globally unpolarized fields, the variation of this parameter is bounded, and its value can effectively discriminate between different configurations of pure states.
We demonstrate a compact interferometric polarimeter using a corner-cube retroreflector and an adjustable mirror to create the necessary transformations targeted states of polarization. The Stokes vector can be found using two alternative recovery procedures.
We experimentally measure the contributions of beam distortion and wandering to OAM modal coupling through a random turbulent medium. The inter-modal power coupling further increases under turbulent-medium-induced beam distortions in comparison with the beam-wandering-only cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.