The milk along with xanthan at levels 0, 1.9, 3.9, 5.9, 7.9, 9.9 and 0.1 and 0.2% (No 1 (control) to 11 respectively) as egg replacement were used for preparation of mayonnaise. Creaming index, heat stability, physical stability and rheological properties of samples over a were investigated. Also flow behavior of samples were fitted to Power law, Herschel-Bulkley and Casson models. It was found that addition milk along with xanthan to mayonnaise protected from phase separation in comparison to control sample. All the samples had stability higher than 99% except samples 1, 4, 5 and 6. The highest stability was recorded for sample No 11 (99.98%) and the lowest for 5(74.95%) that compared with control sample had significant differences (p>0.05). All the samples except No 1 and 5 showed heat stability higher than 99 % and the highest stability recorded for No 11(99.72%) and the lowest for No 5(67.42 %) and in comparison with control were significantly different (p> 0.05). Apparent viscosity decreased with increase the egg replacement from 40% to 80%, as the highest and lowest viscosity observed in samples contain 100% and 80% replacement respectively. All samples showed shear-thinning behavior and the high coefficients of determination for Power law and Herschel-Bulkley models (0.99) revealed the adequacy of these rheological models to describe flow behavior of mayonnaise.
ABSTRACT. The milk along with xanthan at levels 0, 1.9, 3.9, 5.9, 7.9, 9.9 and 0.1 and 0.2 % (No 1 (control) to 11 respectively) as egg replacement were used for preparation of mayonnaise. Creaming index, heat stability, physical stability and rheological properties of samples over a were investigated. Also flow behavior of samples were fitted to Power law, Herschel-Bulkley and Casson models. It was found that addition milk along with xanthan to mayonnaise protected from phase separation in comparison to control sample. All the samples had stability higher than 99% except samples 1, 4, 5 and 6. The highest stability was recorded for sample No 11 (99.98%) and the lowest for 5 (74.95%) that compared with control sample had significant differences (p> 0.05). All the samples except No 1 and 5 showed heat stability higher than 99 % and the highest stability recorded for No 11 ( 99.72%) and the lowest for No 5 (67.42 %) and in comparison with control were significantly different (p> 0.05). Apparent viscosity decreased with increase the egg replacement from 40% to 80%, as the highest and lowest viscosity observed in samples contain 100% and 80% replacement respectively. All samples showed shear-thinning behavior and the high coefficients of determination for Power law and Herschel-Bulkley models (0.99) revealed the adequacy of these rheological models to describe flow behavior of mayonnaise.
The milk along with xanthan at levels 0, 1.9, 3.9, 5.9, 7.9, 9.9 and 0.1 and 0.2 % (No 1 (control) to 11 respectively) as egg replacement were used for preparation of mayonnaise. Creaming index, heat stability, physical stability and rheological properties of samples over a were investigated. Also flow behavior of samples were fitted to Power law, Herschel-Bulkley and Casson models. It was found that addition milk along with xanthan to mayonnaise protected from phase separation in comparison to control sample. All the samples had stability higher than 99% except samples 1, 4, 5 and 6. The highest stability was recorded for sample No 11 (99.98%) and the lowest for 5 (74.95%) that compared with control sample had significant differences (p> 0.05). All the samples except No 1 and 5 showed heat stability higher than 99 % and the highest stability recorded for No 11 ( 99.72%) and the lowest for No 5 (67.42 %) and in comparison with control were significantly different (p> 0.05). Apparent viscosity decreased with increase the egg replacement from 40% to 80%, as the highest and lowest viscosity observed in samples contain 100% and 80% replacement respectively. All samples showed shear-thinning behavior and the high coefficients of determination for Power law and Herschel-Bulkley models (0.99) revealed the adequacy of these rheological models to describe flow behavior of mayonnaise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.