Oxides are widely used for energy applications, as solid electrolytes in various solid oxide fuel cell devices or as catalysts (often associated with noble metal particles) for numerous reactions involving oxidation or reduction. Defects are the major factors governing the efficiency of a given oxide for the above applications. In this paper, the common defects in oxide systems and external factors influencing the defect concentration and distribution are presented, with special emphasis on ceria (CeO ) based materials. It is shown that the behavior of a variety of oxide systems with respect to properties relevant for energy applications (conductivity and catalytic activity) can be rationalized by general considerations about the type and concentration of defects in the specific system. A new method based on transmission electron microscopy (TEM), recently reported by the authors for mapping space charge defects and measuring space charge potentials, is shown to be of potential importance for understanding conductivity mechanisms in oxides. The influence of defects on gas-surface reactions is exemplified on the interaction of CO and H O with ceria, by correlating between the defect distribution in the material and its adsorption capacity or splitting efficiency.
Charge distribution in magnesium aluminate spinel (MAS) results in the formation of a space‐charge region that plays a critical role in assigning functional properties. Significant theoretical advances explaining this phenomenon have been accomplished, even though quantitative experimental support from nano‐scale granular MAS is only indirect. In this work, the electrostatic potential distribution in nano‐scale grains of nonstoichiometric MAS (MgO·0.95Al2O3 and MgO·1.07Al2O3) was measured by off‐axis electron holography (OAEH) and compared to the distribution of cations and defects in this material as measured by electron energy‐loss spectroscopy (EELS). In this manner, we studied the roles of composition, grain size, and applied electric field (EF) on the formation of a space‐charge region. We quantitatively demonstrated that regardless of grain size, the vicinity of MgO·0.95Al2O3 grain boundaries presented an excess of Mg+2 cations, whereas the vicinity of MgO·1.07Al2O3 grain boundaries included an excess of Al+3 cations. The degree of structural disorder (ie, the inversion parameter, i) indicated that as‐synthesized MAS were significantly disordered (i between 0.37 and 0.41), with values decreasing toward equilibrium ordering values following annealing (i between 0.27 and 0.31). The application of an external ~150 V/cm EF during annealing further enhanced lattice ordering (i between 0.16 and 0.19). Such variations in the distribution of cations and defects should determine the space‐charged potential (SCP). However, using these measurements to calculate the SCP was not possible due to the wide range of values reported for formation energies of defects (0.82‐8.78 eV). Consequently, we correlated local ionic ordering with electrostatic potential in nonstoichiometric MAS. The magnitudes of the SCP in both MgO·0.95Al2O3 and MgO·1.07Al2O3 decreased following annealing from −3.4 ± 0.3 V and 2.0 ± 0.2 V to −2.0 ± 0.2 V and 1.6 ± 0.1 V, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.