The field of Arctic sea ice prediction on “weather time scales” is still in its infancy with little existing understanding of the limits of predictability. This is especially true for sea ice deformation along so-called Linear Kinematic Features (LKFs) including leads that are relevant for marine operations. Here the potential predictability of the sea ice pack in the wintertime Arctic up to ten days ahead is determined, exploiting the fact that sea ice-ocean models start to show skill at representing sea ice deformation at high spatial resolutions. Results are based on ensemble simulations with a high-resolution sea ice-ocean model driven by atmospheric ensemble forecasts. The predictability of LKFs as measured by different metrics drops quickly, with predictability being almost completely lost after 4–8 days. In contrast, quantities such as sea ice concentration or the location of the ice edge retain high levels of predictability throughout the full 10-day forecast period. It is argued that the rapid error growth for LKFs is mainly due to the chaotic behaviour of the atmosphere associated with the low predictability of near surface wind divergence and vorticity; initial condition uncertainty for ice thickness is found to be of minor importance as long as LKFs are initialized at the right locations.
This paper quantifies spurious dissipation and mixing of various advection schemes in idealized experiments of lateral shear and baroclinic instabilities in numerical simulations of a re-entrant Eady channel for configurations with large and small Rossby numbers. Effects of advection schemes on the evolution of background potential energy and the dynamics of the restratification process are analysed. The advection schemes for momentum and tracer are considered using several different methods including a recently developed local dissipation analysis. We use the Weighted Essentially Non-Oscillatory (WENO) scheme and the 5-pointstencil Monotonicity Preserving (MP5) scheme as highly accurate but complex schemes. As lower order, less complex schemes, we use Total Variation Diminishing (TVD) schemes, e.g. the Symmetric Piecewise-Linear (SPL-max- schemes provide the best results with MP5 being approximately 2.3 times more expensive in our implementation. In contrast to the configuration with a small Rossby number, when significant differences between schemes become apparent, the different advection schemes behave similarly for a larger Rossby number. Another major outcome of the present study is that generally positive global numerical dissipation and positive background potential energy evolution delay the restratification process.
Sea ice models have become essential components of weather, climate, and ocean models. A realistic representation of sea ice affects the reliability of process representation, environmental forecast, and climate projections. Realistic simulations of sea ice kinematics require the consideration of both large-scale and finescale geomorphological structures such as linear kinematic features (LKF). We propose a multiscale directional analysis (MDA) that diagnoses the spatial characteristics of LKFs. The MDA is different from previous analyses in that it (i) does not detect LKFs as objects, (ii) takes into account the width of LKFs, and (iii) estimates scale-dependent orientation and intersection angles. The MDA is applied to pairs of deformation fields derived from satellite remote sensing data and from a numerical model simulation with a horizontal grid spacing of ~4.5 km. The orientation and intersection angles of LKFs agree with the observations and confirm the visual impression that the intersection angles tend to be smaller in the satellite data compared to the model data. The MDA distributions can be used to compare satellite data and numerical model fields using conventional metrics such as a Euclidean distance, the Bhattacharyya coefficient, or the Earth mover’s distance. The latter is found to be the most meaningful metric to compare distributions of LKF orientations and intersection angles. The MDA proposed here provides a tool to diagnose if modified sea ice rheologies lead to more realistic simulations of LKFs.
Realistically approximating the basal melting of ice shelves is critical for reliable climate model projections and the process representations in ice-ocean interaction. In this regard, extensive research attributes the massive thinning of vulnerable ice shelves to basal melting enhancement driven by ocean water warming, focusing mainly on oceanic warm water intrusion into the sub-shelf basins. However, climate models mainly underestimated the impacts of probable small-scale processes at the ice-ocean interface on basal melting by using smooth ice base topographies. This paper provides new insights into how smallscale features on the ice-ocean interface contribute to basal melting enhancement and spatial distribution. We developed a time-dependent, two-dimensional ice-shelf plume model as an optimal tool that allows a high-resolution representation of basal topography and with the unique ability to provide valuable information from the mixed boundary layer between ocean and ice shelves. In an exemplary case study for the floating ice tongue of the 79* North Glacier, systematic sensitive analyses were performed with the developed model. Our results show that the sub-km-scale basal channels with realistic dimensions increase the mean basal melt rate and generate extreme and sizeable lateral variability of melting at the grounding line. This mechanism is not reproducible with the tuning of drag coefficient. Besides, it reveals that the subglacial discharge in the channels has contradicting effects of reducing the melt rate by refreshing the sea water and increasing the freezing point while increasing the melt rate due to high water speed. However, the latter was dominant in our experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.