Metal additive manufacturing (AM) has gained much attention in recent years due to its advantages including geometric freedom and design complexity, appropriate for a wide range of potential industrial applications. However, conventional metal AM methods have high-cost barriers due to the initial cost of the capital equipment, support, and maintenance, etc. This study presents a low-cost metal material extrusion technology as a prospective alternative to the production of metallic parts in additive manufacturing. The filaments used consist of copper, bronze, stainless steel, high carbon iron, and aluminum powders in a polylactic acid matrix. Using the proposed fabrication technology, test specimens were built by extruding metal/polymer composite filaments, which were then sintered in an open-air furnace to produce solid metallic parts. In this research, the mechanical and thermal properties of the built parts are examined using tensile tests, thermogravimetric, thermomechanical and microstructural analysis.
Mechanical properties of fiber reinforced additive manufacturing (FRAM) parts are affected by the fiber size and orientation. Oriented fiber composite is most likely to produce better properties. The objective of this research is to perform a comparative analysis of the mechanical properties of short and continuous fiber reinforced nylon 6 produced with fused filament fabrication (FFF) technology. In this study, it was observed that tensile, compression and flexural properties are significantly affected by the change in the fiber length and orientation. Scanning electron microscopy (SEM) was performed after mechanical testing to observe the influence of fiber on the final properties. From the testing, it was observed that continuous-FRAM (C-FRAM) parts show better properties in tensile loading and short-FRAM (S-FRAM) in bending. S-FRAM parts show better improvement in flexural and compression properties as compared to CFRAM parts. Morphological analysis of tested 3D-printed parts concluded that the fiber-pull out and fiber breakage are the main failure mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.