In robotic machining applications, the precision of the robot is of great importance. In heavy machining process, the lower stiffness of industrial robots results in greater position errors than that of the CNC machine executing the same process. In this contribution, a new stiffness model with 36 degrees of freedom and nonlinear descriptions are presented together with a new identi cation method. Experimental results outline the potential of the model in machining application. Acknowledgment: The authors would like to acknowledge Mr. Justus Kopp and Mr. Julian Ricardo Diaz Posada at Fraunhofer IPA for taking part in the laboratory experiments and the implementation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.