Colorectal cancer is a growing health concern with increasing mortality rates, and resistance to anticancer drugs and radiotherapy is a serious drawback in its treatment. Auraptene is a natural prenyloxycoumarin with valuable anticancer effects. The aim of current study was to determine the synergy between auraptene, ionizing radiation, and chemotherapeutic drugs in colon adenocarcinoma cells for the first time. To do so, HT29 cells were treated with combination of auraptene + cisplatin, + doxorubicin, or + vincristine. Furthermore, cells were pretreated with nontoxic auraptene and then exposed to various doses of X-radiation. Assessment of cell viability not only indicated significant (p < 0.05) synergic effects of auraptene and anticancer agents, also revealed more significant (p < 0.01) increase in the toxicity of applied radiations in auraptene pretreated cells. Interesting synergy between auraptene and radiotherapy was then confirmed by morphological alterations, DAPI staining, and flow cytometric analysis of the cell cycle. Moreover, real-time reverse transcription polymerase chain reaction analysis indicated significant (p < 0.01) overexpression of p21, but not GATA6, in auraptene pretreated cells after radiotherapy, and also significant (p < 0.01) down regulation of CD44 and ALDH1 by auraptene. According to present results, auraptene could be considered as an effective natural coumarin to improve the outcome of current chemoradiotherapy options. Copyright © 2017 John Wiley & Sons, Ltd.
Colon adenocarcinoma is one of the most common cancers worldwide, and resistance to current therapeutic modalities is a serious drawback in its treatment. Auraptene is a natural coumarin with considerable anticancer effects. The goal of this study was to introduce a novel combinatorial approach for treatment against colon adenocarcinoma cells. To do so, HT29 cells were pretreated with nontoxic auraptene and then hyperthermia was induced. Afterwards, the viability of the cells was assessed, changes induced in the cell cycle were analyzed, and the expression patterns of candidate genes were studied. Results from the MTT assay demonstrated significant (p < 0.01) decreases in cell viability when 20 μg/mL auraptene was used for 72 h, heat shock was induced, and cells were allowed to recover for 24 h. Flow cytometry analysis also indicated considerable changes in the distribution of cells between the sub-G/G and G/M phases of cell cycle after the combinatorial treatment. Real-time RT-PCR studies revealed significant (p < 0.01) up-regulation of P21 in the cells pretreated with auraptene after heat shock, whereas no significant change was observed in HSP27 expression. Our findings not only indicate, for the first time, that the efficacy of hyperthermia was improved by auraptene pretreatment, but also suggest that this coumarin could be used in the future to achieve more effective therapeutic outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.