Purpose: To evaluate ability of radiomic (computer-extracted imaging) features to distinguish non-small cell lung cancer adenocarcinomas from granulomas at noncontrast CT. Materials and Methods: For this retrospective study, screening or standard diagnostic noncontrast CT images were collected for 290 patients (mean age, 68 years; range, 18–92 years; 125 men [mean age, 67 years; range, 18–90 years] and 165 women [mean age, 68 years; range, 33–92 years]) from two institutions between 2007 and 2013. Histopathologic analysis was available for one nodule per patient. Corresponding nodule of interest was identified on CT axial images by a radiologist with manually annotation. Nodule shape, wavelet (Gabor), and texture-based (Haralick and Laws energy) features were extracted from intra- and perinodular regions. Features were pruned to train machine learning classifiers with 145 patients. In a test set of 145 patients, classifier results were compared against a convolutional neural network (CNN) and diagnostic readings of two radiologists. Results: Support vector machine classifier with intranodular radiomic features achieved an area under the receiver operating characteristic curve (AUC) of 0.75 on the test set. Combining radiomics of intranodular with perinodular regions improved the AUC to 0.80. On the same test set, CNN resulted in an AUC of 0.76. Radiologist readers achieved AUCs of 0.61 and 0.60, respectively. Conclusion: Radiomic features from intranodular and perinodular regions of nodules can distinguish non-small cell lung cancer adenocarcinomas from benign granulomas at noncontrast CT. Summary Perinodular and intranodular radiomic features corresponding to texture and shape (radiomics) were evaluated to distinguish nonsmall cell lung cancer adenocarcinomas from benign granulomas at noncontrast CT.
Photoacoustic imaging (PAI) is an emerging medical imaging modality capable of providing high spatial resolution of Ultrasound (US) imaging and high contrast of optical imaging. Delay-and-Sum (DAS) is the most common beamforming algorithm in PAI. However, using DAS beamformer leads to low resolution images and considerable contribution of off-axis signals. A new paradigm namely delay-multiply-and-sum (DMAS), which was originally used as a reconstruction algorithm in confocal microwave imaging, was introduced to overcome the challenges in DAS. DMAS was used in PAI systems and it was shown that this algorithm results in resolution improvement and sidelobe degrading. However, DMAS is still sensitive to high levels of noise, and resolution improvement is not satisfying. Here, we propose a novel algorithm based on DAS algebra inside DMAS formula expansion, double stage DMAS (DS-DMAS), which improves the image resolution and levels of sidelobe, and is much less sensitive to high level of noise compared to DMAS. The performance of DS-DMAS algorithm is evaluated numerically and experimentally. The resulted images are evaluated qualitatively and quantitatively using established quality metrics including signal-to-noise ratio (SNR), full-width-half-maximum (FWHM) and contrast ratio (CR). It is shown that DS-DMAS outperforms DAS and DMAS at the expense of higher computational load. DS-DMAS reduces the lateral valley for about 15 dB and improves the SNR and FWHM better than 13% and 30%, respectively. Moreover, the levels of sidelobe are reduced for about 10 dB in comparison with those in DMAS.
Abstract. In Photoacoustic imaging (PA), Delay-and-Sum (DAS) beamformer is a common beamforming algorithm having a simple implementation. However, it results in a poor resolution and high sidelobes. To address these challenges, a new algorithm namely Delay-Multiply-and-Sum (DMAS) was introduced having lower sidelobes compared to DAS. To improve the resolution of DMAS, a novel beamformer is introduced using Minimum Variance (MV) adaptive beamforming combined with DMAS, so-called Minimum Variance-Based DMAS (MVB-DMAS). It is shown that expanding the DMAS equation results in multiple terms representing a DAS algebra. It is proposed to use the MV adaptive beamformer instead of the existing DAS. MVB-DMAS is evaluated numerically and experimentally. In particular, at the depth of 45 mm MVB-DMAS results in about 31 dB, 18 dB and 8 dB sidelobes reduction compared to DAS, MV and DMAS, respectively. The quantitative results of the simulations show that MVB-DMAS leads to improvement in full-width-half-maximum about 96 %, 94 % and 45 % and signal-to-noise ratio about 89 %, 15 % and 35 % compared to DAS, DMAS, MV, respectively. In particular, at the depth of 33 mm of the experimental images, MVB-DMAS results in about 20 dB sidelobes reduction in comparison with other beamformers.
Purpose Distinguishing between benign granulmoas and adenocarcinomas is confounded by their similar visual appearance on routine CT scans. Unfortunately, owing to the inability to discriminate these lesions radigraphically, many patients with benign granulomas are subjected to unnecessary surgical wedge resections and biopsies for pathologic confirmation of cancer presence or absence. This suggests the need for improved computerized characterization of these nodules in order to distinguish between these two classes of lesions on CT scans. While there has been substantial interest in the use of textural analysis for radiomic characterization of lung nodules, relatively less work has been done in shape based characterization of lung nodules, particularly with respect to granulmoas and adenocarcinomas. The primary goal of this study is to evaluate the role of 3D shape features for discrimination of benign granulomas from malignant adenocarcinomas on lung CT images. Towards this end we present an integrated framework for segmentation, feature characterization and classification of these nodules on CT. Methods The nodule segmentation method starts with separation of lung regions from the surrounding lung anatomy. Next, the lung CT scans are projected into and represented in a three dimensional spectral embedding (SE) space, allowing for better determination of the boundaries of the nodule. This then enables the application of a gradient vector flow active contour (SEGvAC) model for nodule boundary extraction. A set of 24 shape features from both 2D slices and 3D surface of the segmented nodules are extracted, including features pertaining to the angularity, spiculation, elongation and nodule compactness. A feature selection scheme, PCA-VIP, is employed to identify the most discriminating set of features to distinguish granulmoas from adenocarcinomas within a learning set of 82 patients. The features thus identified were then combined with a support vector machine classifier and independently validated on a distinct test set comprising 67 patients. The performance of the classifier for both of the training and validation cohorts was evaluated by the area under receiver characteristic curve (ROC). Results We used 82 and 67 studies from two different institutions respectively for training and independent validation of the model and the shape features. The Dice coefficient between automatically segmented nodules by SEGvAC and the manual delineations by expert radiologists (readers) was 0.84 ± 0.04 whereas inter-reader segmentation agreement was 0.79 ± 0.12. We also identified a set of consistent features (Roughness, Convexity and Spherecity) that were found to be strongly correlated across both manual and automated nodule segmentations (R > 0.80, p < 0.0001) and capture the marginal smoothness and 3D compactness of the nodules. On the independent validation set of 67 studies our classifier yielded a ROC AUC of 0.72 and 0.64 for manually- and automatically segmented nodules respectively. On a subset of 20 studies, th...
In Ultrasound (US) imaging, Delay and Sum (DAS) is the most common beamformer, but it leads to low quality images. Delay Multiply and Sum (DMAS) was introduced to address this problem. However, the reconstructed images using DMAS still suffer from level of sidelobes and low noise suppression. In this paper, a novel beamforming algorithm is introduced based on the expansion of DMAS formula. It is shown that there is a DAS algebra inside the expansion, and it is proposed to use DMAS instead of the DAS algebra. The introduced method, namely Double Stage DMAS (DS-DMAS), is evaluated numerically and experimentally. The quantitative results indicate that DS-DMAS results in about 25% lower level of sidelobes compared to DMAS. Moreover, the introduced method leads to 23%, 22% and 43% improvement in Signal-to-Noise Ratio, Full-Width-Half-Maximum and Contrast Ratio, respectively, in comparison with DMAS beamformer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.