Auger electron emitting radionuclides have potential for the therapy of small-size cancers because of their high level of cytotoxicity, low-energy, high linear energy transfer, and short range biologic effectiveness. Auger emitter 165Er (T1/2 = 10.3 h, IEC = 100%) is a potent nuclide for targeted radionuclide therapy. 165Er excitation function via 165Ho(p,n)165Er, 165Ho(d,2n)165Er, 166Er(p,2n)165Tm→165Er, 166Er(d,3n)165Tm→165Er, natEr(p,xn)165Tm→165Er and 164Er(d,n)165Tm→165Er reactions were calculated by ALICE/91, ALICE/ASH (GDH Model & Hybrid Model) and TALYS-1.2 (Equilibrium & Pre-Equilibrium) codes and compared to existing data. Requisite for optimal thicknesses of targets were obtained by SRIM code for each reaction
An efficient and environmentally friendly sample preparation method based on the application of hydrophobic 1-Hexylpyridinium hexafluorophosphate [Hpy][PF6] ionic liquid (IL) as a microextraction solvent was proposed to preconcentrate terazosin. The performance of the microextraction method was improved by introducing a common ion of pyridinium IL into the sample solution. Due to the presence of the common ion, the solubility of IL significantly decreased. As a result, the phase separation successfully occurred even at high ionic strength, and the volume of the settled IL-phase was not influenced by variations in the ionic strength (up to 30% w/v). After preconcentration step, the enriched phase was introduced to the spectrofluorimeter for the determination of terazosin. The obtained results revealed that this system did not suffer from the limitations of that in conventional ionic-liquid microextraction. Under optimum experimental conditions, the proposed method provided a limit of detection (LOD) of 0.027 μg L−1 and a relative standard deviation (R.S.D.) of 2.4%. The present method was successfully applied to terazosin determination in actual pharmaceutical formulations and biological samples. Considering the large variety of ionic liquids, the proposed microextraction method earns many merits, and will present a wide application in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.