Assessment of human epidermal growth factor receptor-2 (HER2) tumor marker status is an impressive factor in screening, diagnosing and monitoring breast cancer (BC). The electrochemical biosensor is a revolutionary method in cancer diagnosis, which is used in this research to detect HER2+ circulating tumor cells. The electrochemical activity, size, shape, and morphology of the synthesized nanomaterials were analyzed. The hybrid nanocomposite established by the coupling of reduced graphene oxide nanosheets (rGONs) and rhodium nanoparticles (Rh-NPs) on the surface of graphite electrode resulted in improved surface area, electrochemical activity, and biocompatibility. The graphite electrode-based aptasensor (g-aptasensor) demonstrated exceptional performance against HER2-overexpressed SKBR3 cancer cells, with a linear dynamic range of 5.0 to 10.0 × 104 cells/mL, an analytical limit of detection (LOD) as low as 1.0 cell/mL, and a limit of quantification (LOQ) of 3.0 cells/mL. The G-rich DNA aptamers can fold into an intermolecular G-quadruplex, which specifically bind to the target molecule. Consequently, the advantages of this highly efficient nanocomposite platform include broad dynamic range, high specificity, selectivity, stability, reproducibility, and low cost. These characteristics indicate that the fabricated nanobiosensor has a high potential for use in detecting and monitoring HER2 level for the care of BC patients and clinical diagnosis.
Evaluation of extracellular domain of human epidermal growth factor receptor-2 (HER2-ECD) oncomarker status is an impressive factor in screening, diagnosing and monitoring early-stage breast cancer (BC). Electrochemical aptamer-based nanobiosensor with high sensitivity and selectivity for quantitative and qualitative measurement of HER2-ECD oncomarker was developed. In this study, the nanocomposite made by distinct materials included reduced graphene oxide nano-sheets (rGONs) and rhodium nanoparticles (Rh-NPs) on the graphite electrode (GE) surface. This structure resulted in amplified electrochemical activity, high surface area, stability, and bio-compatibility. Each of the steps of preparing nanomaterials and setting up biosensor were carefully examined by analytical and electrochemical techniques. Various modified electrodes were constructed and analyzed in terms of electrochemical performance, morphology, size, and shape of nanomaterials. The GE-based aptasensor had a noteworthy and conducive results against HER2-ECD with a wide dynamic range of 10.0–500.0 ng/mL, a low limit of detection (LOD) of 0.667 ng/mL (significantly less than the clinical cut-off), and a low limit of quantification (LOQ) of 2.01 ng/mL. The benefits provided by this aptasensor such as broad dynamic range, high sensitivity, selectivity, stability, reproducibility, and low cost suggest tremendous potential for non-invasive detection and monitoring of the HER2-ECD levels of BC care and clinical diagnosis.
To determine the effects of educational instructions on hemodialysis patients' knowledge and quality of life (QOL), we studied 99 patients randomly assigned to control and experimental groups after participation in a pretest exam. The two groups were not significantly different in terms of demographic composition. The instrument used in this study was a questionnaire regarding patients' knowledge and the standard questionnaire to assess QOL for end-stage renal disease (ESRD) patients. Then, intervention (nutritional education) was conducted in the experimental group lasting for 12 weeks. After 16 weeks, a post test regarding subjects' knowledge on dietary instructions and their QOL were as conducted. There was no significant difference in QOL score and knowledge score before and after intervention in the control group, but there was a significant difference in the experimental group. In addition, after the intervention, the difference in knowledge and QOL score persisted between the two groups. The results of this study supported the positive effects of educational program on patients' knowledge and QOL among ESRD patients. It is recommended that dietary instruction be included in all educational programs to improve ESRD patients' QOL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.