BackgroundTransgenic mice are being considered as invaluable tool in biological sciences towards comprehension of the cause of the genetic diseases. Manipulated embryonic stem (ES) cells are used to produce loss-of-function mutant mice. Microinjection of manipulated ES cells into blastocoel cavity, and morula fusion are the two main techniques in producing transgenic mice. So far, no reports have dealt with the comparison of these two methodologies provide.ObjectiveThe object of this study was to determine advantages and disadvantages of knockout mouse creation protocols.Materials and MethodsBoth blastocyst microinjection and morula aggregation were implemented to produce chimeric mice and the advantages and disadvantages of each technique were evaluated. For this, embryonic stem cells were transfected with a GFP-expression vector. In blastocyst microinjection technique, first transfected ES cell were cultured and appropriate colonies were selected. The cells were microinjected to blastocoel cavity of the expanded blastocyst. In morula aggregation technique, the transfected ES cell colonies were sandwiched between two naked morulas. After 16 h incubation in a 5% CO2 at 37 °C the morulas and infected ES cell were aggregated to produce a new morula. All the injected blastocyst and aggregated morulas were transferred to uterus of foster mice. The new born mice were analyzed for chimera confirmation.ResultsFive chimeric mice (21.75%) from morula aggregation and eight chimeric mice (63%) from blastocyst microinjection were born. The results indicated that both techniques can be used to generate chimeric mouse, however the success rate was higher in blastocyst microinjection.ConclusionMorula fusion stands out where the required instrumentations are in place. Furthermore, the quality of ES cells plays a prominent role in the success rate. When the cell quality is low the blastocoel microinjection is recommended. The microinjection technique is more effective than morula aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.