We study the problem of recovering the phase from magnitude measurements; specifically, we wish to reconstruct a complex-valued signal x ∈ C n about which we have phaseless samples of the form y r = ⟨a r , x⟩ 2 , r = 1, . . . , m (knowledge of the phase of these samples would yield a linear system). This paper develops a non-convex formulation of the phase retrieval problem as well as a concrete solution algorithm. In a nutshell, this algorithm starts with a careful initialization obtained by means of a spectral method, and then refines this initial estimate by iteratively applying novel update rules, which have low computational complexity, much like in a gradient descent scheme. The main contribution is that this algorithm is shown to rigorously allow the exact retrieval of phase information from a nearly minimal number of random measurements. Indeed, the sequence of successive iterates provably converges to the solution at a geometric rate so that the proposed scheme is efficient both in terms of computational and data resources. In theory, a variation on this scheme leads to a near-linear time algorithm for a physically realizable model based on coded diffraction patterns. We illustrate the effectiveness of our methods with various experiments on image data. Underlying our analysis are insights for the analysis of nonconvex optimization schemes that may have implications for computational problems beyond phase retrieval.
This paper considers the problem of clustering a collection of unlabeled data points assumed to lie near a union of lower-dimensional planes. As is common in computer vision or unsupervised learning applications, we do not know in advance how many subspaces there are nor do we have any information about their dimensions. We develop a novel geometric analysis of an algorithm named sparse subspace clustering (SSC) [In IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009 (2009) 2790-2797. IEEE], which significantly broadens the range of problems where it is provably effective. For instance, we show that SSC can recover multiple subspaces, each of dimension comparable to the ambient dimension. We also prove that SSC can correctly cluster data points even when the subspaces of interest intersect. Further, we develop an extension of SSC that succeeds when the data set is corrupted with possibly overwhelmingly many outliers. Underlying our analysis are clear geometric insights, which may bear on other sparse recovery problems. A numerical study complements our theoretical analysis and demonstrates the effectiveness of these methods.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1034 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
This paper considers the question of recovering the phase of an object from intensity-only measurements, a problem which naturally appears in X-ray crystallography and related disciplines. We study a physically realistic setup where one can modulate the signal of interest and then collect the intensity of its diffraction pattern, each modulation thereby producing a sort of coded diffraction pattern. We show that PhaseLift, a recent convex programming technique, recovers the phase information exactly from a number of random modulations, which is polylogarithmic in the number of unknowns. Numerical experiments with noiseless and noisy data complement our theoretical analysis and illustrate our approach.
Subspace clustering refers to the task of finding a multi-subspace representation that best fits a collection of points taken from a highdimensional space. This paper introduces an algorithm inspired by sparse subspace clustering (SSC) [In IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2009) 2790-2797] to cluster noisy data, and develops some novel theory demonstrating its correctness. In particular, the theory uses ideas from geometric functional analysis to show that the algorithm can accurately recover the underlying subspaces under minimal requirements on their orientation, and on the number of samples per subspace. Synthetic as well as real data experiments complement our theoretical study, illustrating our approach and demonstrating its effectiveness.
In this paper we study the problem of learning a shallow artificial neural network that best fits a training data set. We study this problem in the over-parameterized regime where the number of observations are fewer than the number of parameters in the model. We show that with quadratic activations the optimization landscape of training such shallow neural networks has certain favorable characteristics that allow globally optimal models to be found efficiently using a variety of local search heuristics. This result holds for an arbitrary training data of input/output pairs. For differentiable activation functions we also show that gradient descent, when suitably initialized, converges at a linear rate to a globally optimal model. This result focuses on a realizable model where the inputs are chosen i.i.d. from a Gaussian distribution and the labels are generated according to planted weight coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.