In this study, the effect of non-metallic inclusions (NMIs) on tensile behavior of titanium stabilized Fe-20Cr-9Ni steel was investigated. The size of NMIs was decreased via the electro-slag remelting (ESR) process. JK-inclusion rating method revealed that the studied steel consisted of D-type (square-shaped) inclusions. According to energy dispersive spectroscopy, it was determined that the appeared inclusions in the matrix of the titanium stabilized Fe-20Cr-9Ni steel is predominantly titanium nitride (TiN). As a result of the ESR process, excellent improvement in the tensile properties of the studied steel was observed. Subsequently, the effect of inclusion size (d = 5, 10, 25, 50 µm) and orientation (α = 0, 45°) on stress concentration factor around the non-metallic inclusion and metallic matrix was simulated. The result of finite element analysis indicated that, for both square (α = 0 °) and rhombus (α = 45°) shape inclusions, increasing inclusion size has resulted in high-stress concentration factor during plastic deformation. On the other hands, generated Mises stress field around the non-metallic inclusion presented that, for the same inclusion size, rhombus (α = 45°) shape inclusion is more susceptible to homogenous deformation in comparison with square (α = 0°) one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.