Cloud computing is a demanding business platform for services related to the field of IT. The goal of cloud customers is to access resources at a sustainable price, while the goal of cloud suppliers is to maximize their services utilization. Previously, the customers would bid for every single resource type, which was a limitation of cloud resources allocation. To solve these issues, researchers have focused on a combinatorial auction in which the resources are offered by the providers in bundles so that the user bids for their required bundle. Still, in this allocation mechanism, some drawbacks need to be tackled, such as due to the lower average bid price the users are dropped from the auction process. To solve this problem, we proposed a "Negotiation based Combinatorial Double Auction Mechanism for Resource Allocation (N-CDARA) in cloud computing". The proposed method negotiates with dropped users. Lower average bid price users are asked by our proposed mechanism to increase their bids, as by the quoted bids they will be dropped by the auctioneer. Most of the users that are close to winning accept the proposal and increase their bid prices. The proposed mechanism is implemented in a CloudSim simulation toolkit. Results are compared with the latest model and performance study shows that in our proposed scheme more users win and get their requested services and the utilization of offered services is increased up to 18.4% than the existing schemes.
The seismic design codes/standards of most countries include the nonlinear response of a structure implicitly through a response reduction/modification factor (R). It is the factor by which the actual base shear should be reduced to find the design base shear during design basic earthquake considering nonlinear behavior and deformation limits of structures. In the present study, attempts are made to determine the 'R' factors of four existing RC staging elevated water tanks, which are designed as per draft Indian standards for seismic design of liquid and RC designs and having a ductile detailing considering the effects of soil flexibility. The elevated RC water tanks are analyzed using displacement controlled non-linear static pushover analysis to evaluate the base shear capacity and ductility of tank considering soil flexibility. The 'R' factor is obtained for four realistic designs of elevated RC water tanks having different capacities at two performance levels. The evaluated values of 'R' factor are compared with the values suggested in the design code. The results of the study show that the flexibility of supporting soil has considerable effect on response reduction factor, period and overall performance of water tank, indicating that idealization of fixity at base may be seriously mistaken for soft soils. All the studied water tanks were designed with higher safety margin than that of specified in Indian Standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.