Mapping 123 million neonatal, infant and child deaths between 2000 and 2017 Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2-to end preventable child deaths by 2030-we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000-2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low-and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations. Gains in child survival have long served as an important proxy measure for improvements in overall population health and development 1,2. Global progress in reducing child deaths has been heralded as one of the greatest success stories of global health 3. The annual global number of deaths of children under 5 years of age (under 5) 4 has declined from 19.6 million in 1950 to 5.4 million in 2017. Nevertheless, these advances in child survival have been far from universally achieved, particularly in low-and middle-income countries (LMICs) 4. Previous subnational child mortality assessments at the first (that is, states or provinces) or second (that is, districts or counties) administrative level indicate that extensive geographical inequalities persist 5-7. Progress in child survival also diverges across age groups 4. Global reductions in mortality rates of children under 5-that is, the under-5 mortality rate (U5MR)-among post-neonatal age groups are greater than those for mortality of neonates (0-28 days) 4,8. It is relatively unclear how these age patterns are shifting at a more local scale, posing challenges to ensuring child survival. To pursue the ambitious Sustainable Development Goal (SDG) of the United Nations 9 to "end preventable deaths of newborns and children under 5" by 2030, it is vital for decision-makers at all levels to better understand where, and at what ages, child survival remains most tenuous.
Summary It has been suggested that trimethylamine N‐oxide (TMAO) is associated with increased risk of diabetes and cardiovascular disease (CVD) morbidity and mortality. However, it is not known whether increased TMAO concentrations is associated with obesity. In the current study, we summarized the evidence related to the association of circulating TMAO with the risk of obesity measurements, including body mass index (BMI), waist circumference (WC), and waist‐to‐hip ratio (WHR) in a two‐class and dose‐response meta‐analysis of observational studies. A systematic search carried out in PubMed, SCOPUS, Cochrane, and ProQuest through September 30, 2019 resulted in 12 eligible studies which were included in the current meta‐synthesis. In these studies, BMI was reported but there were no reports of WC or WHR. Meta‐analysis of two‐class variables and dose‐response meta‐analysis of continuous variables were performed. Subgroup analysis and meta‐regression were also performed to identify the source of heterogeneity. There was a dose‐response association between circulating TMAO concentration and increased BMI in studies involving healthy individuals (P nonlinearity = .007), while no evidence of departure from linearity was observed according to study design or among patients with CVD. Results showed the highest category of TMAO was associated with 0.56 kg/m2 increase in BMI (weighted mean difference [WMD], 0.563; CI, 0.026‐1.100; P = .04). The results of the current meta‐analysis revealed a positive association between circulating TMAO and obesity as presented by increased BMI. Moreover, a dose‐dependent association between circulating TMAO and obesity was also identified in apparently healthy individuals. This is the first meta‐analysis to reveal positive dose‐dependent associations between circulating TMAO concentration and obesity.
Background Numerous studies have evaluated the association between dietary factors and cardiovascular risk among patients with chronic disease. It is worthwhile to assess these associations in a combination model rather than in an isolated form. In the current study, we aimed to use structural equation modeling (SEM) to assess the association of adherence to a healthy eating index (HEI)-2015 with socio-demographic factors, psychological characteristics, metabolic syndrome (MetS) and other cardio-metabolic risk factors among obese individuals. Methods This cross-sectional study was conducted among 188 healthy obese adults (96 males and 92 females) aged 20–50 years in Tabriz. A validated semi-quantitative food frequency questionnaire (FFQ) was used to record dietary intake and to estimate HEI-2015. Anthropometric parameters, blood pressure and biochemical measurements were evaluated according to standard protocols. Interrelationships among socio-demographic parameters and HEI with cardio-metabolic risk factors were analyzed using SEM. Results The results of SEM analysis revealed that HEI mediated the association between age and several cardio-metabolic risk factors including fat mass (FM), fat free mass (FFM), systolic blood pressure (SBP) and high-density lipoprotein (HDL) (p < 0.05). Moreover, adherence to Dietary Guidelines for Americans (DGA) appears to mediate association between gender and waist circumference (B = -9.78), SBP (B = -4.83), triglyceride (B = -13.01) and HDL (B = 4.31). HEI also mediated indirect negative effects of socioeconomic status on FM (B = -0.56), FFM (B = -0.25), SBP (B = -0.55) and diastolic blood pressure (DBP) (B = -0.3). Additionally, depression and age had indirect unfavorable effects on some insulin resistance indices such as homeostasis model assessment of insulin resistance (B = 0.07; p<0.05, for age) and quantitative insulin sensitivity check index (p<0.05, for age and depression) via HEI. High adherence to HEI was found to be inversely associated with MetS risk (p<0.05). Conclusion Adherence to HEI-2015 seems to mediate the effect of socio-demographic parameters and mental health on cardio-metabolic risk factors as well as MetS risk. Further studies are needed to confirm these findings.
Background In the current meta-analysis, we aimed to systematically review and summarize the eligible studies evaluating the association between dietary acid load in terms of potential renal acid load (PRAL) and net-endogenous acid production (NEAP) with anthropometric parameters and serum lipids in adult population. Methods In a systematic search from PubMed, Scopus, Web of Sciences and Cochrane electronic databases up to December 2018, relevant studies were included. Cross-sectional, case control or cohort studies evaluating the association between PRAL and NEAP with the mean values of body mass index (BMI), waist circumference (WC), low and high density lipoprotein cholesterol (LDL, HDL), triglyceride (TG), total cholesterol (TC) and the prevalence of obesity were included. Results According to our results, having higher dietary acid load content in terms of high PRAL scores was associated with higher triglyceride concentrations (weighted mean difference (WMD): 3.468; confidence interval (CI): -0.231, 7.166, P = 0.04) and higher obesity prevalence (30% and 27% in highest versus lowest categories). Accordingly, being in the highest category of NEAP was associated with higher prevalence of obesity (25% and 22% in highest versus lowest category). In subgroup analysis, higher PRAL scores was associated with higher BMI in women (WMD: 0.122; CI: -0.001, 0.245; P = 0.049) and higher NEAP in men (WMD: 0.890; CI: 0.430, 1.350; P < 0.001). There was no association between dietary acid load and other studied parameters. Conclusions In the current meta-analysis, high dietary acid load content was associated with higher serum triglyceride concentrations and higher obesity prevalence. Reducing dietary acid load content might be a useful preventive strategy against obesity and metabolic disorders.
BackgroundObesity is associated with numerous metabolic and inflammatory disorders. The current study was aimed to evaluate the effects of vitamin D administration on the markers of oxidative stress and inflammation in the cardiac tissue of high-fat diet induced obese rats.MethodsIn the beginning of the study, 40 male Wistar rats were divided into two groups: normal diet (ND) and high fat diet (HFD) for 16 weeks; then each group subdivided into two groups including: ND, ND + vitamin D, HFD and HFD + vitamin D. Vitamin D supplementation was done for 5 weeks at 500 IU/kg dosage. Tumor necrosis factor (TNF)-α concentration and markers of oxidative stress including glutathione peroxidase (GPx), superoxide dismutase (SOD), malondialdehyde (MDA) and catalase (CAT) concentrations in the cardiac tissue and serum concentrations of lipids in rats were determined using ELISA kits and spectrophotometry methods respectively.ResultsAccording to our results, GPx activity in ND and ND + vitamin D group was significantly higher compared with HFD group. Similarly, SOD activity was also significantly increased in ND + vitamin D group compared with ND and HFD groups. Moreover, vitamin D administration, significantly reduced catalase activity in ND + vitamin D and HFD + vitamin D groups (P < 0.05). TNF-α concentration in heart tissue in ND + vitamin D group significantly reduced compared with ND group. Cardiac tissue MDA concentration in baseline or after vitamin D administration did not changed significantly.ConclusionVitamin D improved cardiac oxidative stress and inflammatory markers in HFD induced obese rats. Further studies in human models are needed to further confirm the use of this nutrient in daily clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.