A thin film microextraction method using elecrospun magnetic polybutylene terephthalate nanofibers is developed and implemented to isolate some selected triazines. Due to the high mechanical stability of these nanofibers, they are repeatedly used under harsh magnetic stirring and ultrasonic conditions without any damage and structure degradation. The presence of magnetic nanoparticles within the nanofiber structure increases the extraction efficiency while the fibers could be collected by an external magnet. The synthesized nanocomposite showed strong affinity toward the selected analytes. Apart from the concentration of magnetic nanoparticles within the nanocomposite network, the effect of different parameters on the extraction and desorption processes including the sample pH, extraction time, sample volume, type of desorption solvent, solvent volume, and desorption time were optimized. Eventually, the detection limits were in the range of 0.02-0.05 ng/mL, while the limits of quantification were between 0.1 and 0.2 ng/mL. The linear dynamic range was 0.1-100 ng/mL, and the relative standard deviations were 4-9% (n = 3). The developed method was extended to the real water samples, and the relative recoveries were in the range of 86-103%, indicating that the prepared sorbent is suitable for extraction of triazines from environmental samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.