Timely planning and scheduling of railway infrastructure maintenance interventions are crucial for increased safety, improved availability, and reduced cost. We propose a data‐driven decision‐support framework integrating track condition predictions with tactical maintenance planning and operational scheduling. The framework acknowledges prediction uncertainties by using a Wiener process‐based prediction model at the tactical level. We also develop planning and scheduling algorithms at the operational level. One algorithm focuses on cost‐optimisation, and one algorithm considers the multi‐component characteristics of the railway track by grouping track segments near each other for one maintenance activity. The proposed framework's performance is evaluated using track geometry measurement data from a 34 km railway section in northern Sweden, focusing on the tamping maintenance action. We analyse maintenance costs and demonstrate potential efficiency increases by applying the decision‐support framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.