Energy has become an integral part of our society and global economic development in the twenty-first century. Despite tremendous technological advancements, fossil fuels (coal, natural gas, and oil) continue to be the world’s primary source of energy. Global energy scenarios indicate a change in coal consumption trends in the future, which in turn will have commercial, geopolitical, and environmental consequences. We investigated coal consumption up to 2030 using a new hybrid method of WOANFIS (whale optimization algorithm and adaptive neuro-fuzzy inference system). The WOANFIS method’s performance was assessed by the MSE (Mean Squared Error), MAE (Mean Absolute Error), STD (error standard deviation), RMSE (Root Mean Squared Error), and coefficient of correlation (R2) among the real dataset and the WOANFIS result. For the prediction of global coal consumption, the proposed WOANFIS had the best MAE, RMSE, and correlation coefficient (R2) values, which were 0.00113, 0.0047, and 0.98, respectively. Lastly, future global coal consumption was predicted up to 2030 by WOANFIS. Following 150 years of coal dominance, the results demonstrate that WOANFIS is a suitable method for estimating worldwide coal consumption, which makes it possible to plan for the transition away from coal.
Coal as a fossil and non-renewable fuel is one of the most valuable energy minerals in the world with the largest volume reserves. Artificial neural networks (ANN), despite being one of the highest breakthroughs in the field of computational intelligence, has some significant disadvantages, such as slow training, susceptibility to falling into a local optimal points, sensitivity of initial weights, and bias. To overcome these shortcomings, this study presents an improved ANN structure, that is optimized by a proposed hybrid method. The aim of this study is to propose a novel hybrid method for predicting coal consumption in Iran based on socio-economic variables using the bat and grey wolf optimization algorithm with an artificial neural network (BGWAN). For this purpose, data from 1981 to 2019 have been used for modelling and testing the method. The available data are partly used to find the optimal or near-optimal values of the weighting parameters (1980–2014) and partly to test the model (2015–2019). The performance of the BGWAN is evaluated by mean squared error (MSE), mean absolute error (MAE), root mean squared error (RMSE), standard deviation error (STD), and correlation coefficient (R^2) between the output of the method and the actual dataset. The result of this study showed that BGWAN performance was excellent and proved its efficiency as a useful and reliable tool for monitoring coal consumption or energy demand in Iran.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.