Distribution of particulate matter (PM), toxic, and greenhouse gases in the atmosphere are responsible for air pollution, human health issues, and enhanced global warming. Traditional polymeric nanofibers only can remove PMs from air flue. The objective of this study was to investigate the adsorption capacity and selectivity of hybrid nanofibrous filter media based on polyacrylonitrile (PAN) with different percentages of activated carbon particles such as gas adsorbent for removal of sulfur dioxide (SO2), carbon dioxide (CO2), and methane (CH4) from gaseous streams The adsorption isotherms of SO2, CO2, and CH4 on the hybrid samples were measured at 298, 323, and 348 K and with a pressure range of 0–21 bar by means of the volumetric adsorption method. Uniform PAN nanofiber filter (PANNF) with an average diameter of 273 nm was achieved via the electrospinning process after the optimization of different parameters. Waste tea‐derived activated carbons (ACs) by using phosphoric acid as the activation agent was synthesized through two different methods, chemical activation to obtain the micro size of AC (MAC), and microwave radiation energy to obtain nano size of AC (NAC). Hybrid nanofibers were functionalized with dispersing homogenous solutions containing AC particles by the electrospray process. The effect of high and low loading of NAC and MAC on the PANNF surface was studied to increase our understanding about gas adsorption properties of prepare samples. The samples were characterized by Image analysis (ImageJ), Statistical package for social science (SPSS), Scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared (FT‐IR), Energy‐Dispersive x‐ray (EDX), and Nitrogen adsorption/desorption isotherms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.