Software-Defined Networking (SDN) and Blockchain are leading technologies used worldwide to establish safe network communication as well as build secure network infrastructures. They provide a robust and reliable platform to address threats and face challenges such as security, privacy, flexibility, scalability, and confidentiality. Driven by these assumptions, this paper presents an optimized energyefficient and secure Blockchain-based software-defined IoT framework for smart networks. Indeed, SDN and Blockchain technologies have proven to be able to suitably manage resource utilization and to develop secure network communication across the IoT ecosystem. However, there is a lack of research works that present a comprehensive definition of such a framework that can meet the requirements of the IoT ecosystem (i.e. efficient energy utilization and reduced end-to-end delay). Therefore, in this research, we present a layered hierarchical architecture for the deployment of a distributed yet efficient Blockchain-enabled SDN-IoT framework that ensures efficient cluster-head selection and secure network communication via the identification and isolation of rouge switches. Besides, the Blockchain-enabled flow-rules record keeps track of the rules enforced in the switches and maintains the consistency within the controller cluster. Finally, we assess the performance of the proposed framework in a simulation environment and show that it can achieve optimized energy-utilization, end-to-end delay, and throughput compared to considered baselines, thus being able to achieve efficiency and security in the smart network.
The concept of Industry 4.0 is a newly emerging focus of research throughout the world. However, it has lots of challenges to control data, and it can be addressed with various technologies like Internet of Things (IoT), Big Data, Artificial Intelligence (AI), Software Defined Networking (SDN), and Blockchain (BC) for managing data securely. Further, the complexity of sensors, appliances, sensor networks connecting to the internet and the model of Industry 4.0 has created the challenge of designing systems, infrastructure and smart applications capable of continuously analyzing the data produced. Regarding these, the authors present a distributed Blockchain-based security to industry 4.0 applications with SDN-IoT enabled environment. Where the Blockchain can be capable of leading the robust, privacy and confidentiality to our desired system. In addition, the SDN-IoT incorporates the different services of industry 4.0 with more security as well as flexibility. Furthermore, the authors offer an excellent combination among the technologies like IoT, SDN and Blockchain to improve the security and privacy of Industry 4.0 services properly. Finally , the authors evaluate performance and security in a variety of ways in the presented architecture.
The recognition of pathological voice is considered a difficult task for speech analysis. Moreover, otolaryngologists needed to rely on oral communication with patients to discover traces of voice pathologies like dysphonia that are caused by voice alteration of vocal folds and their accuracy is between 60%-70%. To enhance detection accuracy and reduce processing speed of dysphonia detection, a novel approach is proposed in this paper. We have leveraged Linear Discriminant Analysis (LDA) to train multiple Machine Learning (ML) models for dysphonia detection. Several ML models are utilized like Support Vector Machine (SVM), Logistic Regression, and K-nearest neighbor (K-NN) to predict the voice pathologies based on features like Mel-Frequency Cepstral Coefficients (MFCC), Fundamental Frequency (F 0 ), Shimmer (%), Jitter (%), and Harmonic to Noise Ratio (HNR). The experiments were performed using Saarbrucken Voice Database (SVD) and a privately collected dataset. The K-fold cross-validation approach was incorporated to increase the robustness and stability of the ML models. According to the experimental results, our proposed approach has a 70% increase in processing speed over Principal Component Analysis (PCA) and performs remarkably well with a recognition accuracy of 95.24% on the SVD dataset surpassing the previous best accuracy of 82.37%. In the case of the private dataset, our proposed method achieved an accuracy rate of 93.37%. It can be an effective non-invasive method to detect dysphonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.