On January 30, 2020, India recorded its first COVID-19 positive case in Kerala, which was followed by a nationwide lockdown extended in four different phases from 25th March to 31st May, 2020, and an unlock period thereafter. The lockdown has led to colossal economic loss to India; however, it has come as a respite to the environment. Utilizing the air quality index (AQI) data recorded during this adverse time, the present study is undertaken to assess the impact of lockdown on the air quality of Ankleshwar and Vapi, Gujarat, India. The AQI data obtained from the Central Pollution Control Board was assessed for four lockdown phases. We compared air quality data for the unlock phase with a coinciding period in 2019 to determine the changes in pollutant concentrations during the lockdown, analyzing daily AQI data for six pollutants (PM10, PM2.5, CO, NO2, O3, and SO2). A meta-analysis of continuous data was performed to determine the mean and standard deviation of each lockdown phase, and their differences were computed in percentage in comparison to 2019; along with the linear correlation analysis and linear regression analysis to determine the relationship among the air pollutants and their trend for the lockdown days. The results revealed different patterns of gradual to a rapid reduction in most of the pollutant concentrations (PM10, PM2.5, CO, SO2), and an increment in ozone concentration was observed due to a drastic reduction in NO2 by 80.18%. Later, increases in other pollutants were also observed as the restrictions were eased during phase-4 and unlock 1. The comparison between the two cities found that factors like distance from the Arabian coast and different industrial setups played a vital role in different emission trends.
Ice rafted debris (IRD) records were studied in two sediment cores (SK200/22a and SK200/27) from the sub-Antarctic and Polar frontal regime of the Indian sector of Southern Ocean for their distribution and provenance during the last 22,000 years. The IRD fraction consists of quartz and lithic grains, with the lithic grains dominated by volcaniclastic materials. IRD content was high at marine isotope stage 2 but decreased dramatically to near absence at the Termination 1 and the Holocene. The concentration of IRD at glacial section of the core SK200/27 was nearly twice that of SK200/22a. Moreover, IRD were more abundant at the last glacial maxima (LGM) in SK200/27 with its peak abundance proceeding by nearly two millennia than at SK200/22a. It appears that an intensification of Antarctic glaciation combined with a northward migration of the Polar Front during LGM promoted high IRD flux at SK200/27 and subsequent deglacial warming have influenced the IRD supply at SK200/22a. Quartz and lithic grains may have derived from two different sources, the former transported from the Antarctic mainland, while the latter from the islands of volcanic origin from Southern Ocean. Sea-ice, influenced by the Antarctic Circumpolar Current is suggested to be a dominant mechanism for the distribution of lithic IRD in the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.