This paper presents a novel rule-based system for thinning. The unique feature that distinguishes our thinning system is that it thins symbols to their central lines. This means that the shape of the symbol is preserved. It also means that the method is rotation invariant. The system has 20 rules in its inference engine. These rules are applied simultaneously to each pixel in the image. Therefore, the system has the advantages of symmetrical thinning and speed. The results show that the system is very efficient in preserving the topology of symbols and letters written in any language.
Frequency Domain Reflectometry (FDR) is a technique that was proposed for fault detection in Digital Subscriber Line (DSL) cables. In this paper, we describe how FDR can be used to determine the topology of power line networks. To this end, we first infer distance information from the multiple signal reflections measured and processed with FDR. Then, we present an algorithm that uses these distance measurements to reconstruct the topology step by step operating on a network graph. Numerical results for sets of sample networks demonstrate the effectiveness of the proposed topology-inference approach.
In this paper, new wavelet-based affine invariant functions for shape representation are presented. Unlike the previous representation functions, only the approximation coefficients are used to obtain the proposed functions. One of the derived functions is computed by applying a single wavelet transform; the other function is calculated by applying two different wavelet transforms with two different wavelet families. One drawback of the previously derived detail-based invariant representation functions is that they are sensitive to noise at the finer scale levels, which limits the number of scale levels that can be used. The experimental results in this paper demonstrate that the proposed functions are more stable and less sensitive to noise than the detail-based functions.
Abstract. Thin films' residual stress is often determined by the Stoney formula, using the measurements of the substrate curvature, even if the required hypotheses are not completely respected. In this study, a 2.2 µm titanium nitride coating was deposited by reactive sputtering on a silicon substrate. The Stoney formula was used in order to calculate the residual stress of the film. The radius of curvature was measured, before and after coating by optical profilometer, considering the whole surface of the sample. The effect of the substrate shape (square and rectangular) with various dimensions was investigated. We showed that the shape of the substrate influence strongly the deformation. Moreover, it was highlighted that the choice of the radius (maximum value, minimum value, mean value, with or without initial curvature correction) is critical to the determination of the stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.