In the era of mobile and wireless networks, the growing complexity of end devices and the accentuated tendency towards miniaturization of them raise new security challenges. Authentication is a crucial concern in resource constrained environments, and despite the great number of existing EAP methods, as explained in the article, we are still in need for EAP methods tightly adapted to wireless environments and satisfying heterogeneity of terminals and their limitations of resources. After a first comparative analysis of existing EAP methods, this article presents a new EAP-EHash method (EHash for encrypted hash) that is adapted to the highly vulnerable wireless environment by supporting mutual authentication and session key derivation and offering simplicity, rapidity, and easy-to-deploy features. This EAPEHash was formally proven to satisfy the claimed security properties, thanks to the AVISPA tool. Implementation of it on an 802.11 testbed platform gave realistic authentication delays averaging 26 ms and thus proved that EAP-EHash is competitive to EAP-MD5 that is known to be the simplest of the EAP methods. Features of EAP-EHash include short execution delays and low bandwidth consumption, and as such, it appears attractive for wireless.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.