In the last few years, intensive research has been done to enhance artificial intelligence (AI) using optimization techniques. In this paper, we present an extensive review of artificial neural networks (ANNs) based optimization algorithm techniques with some of the famous optimization techniques, e.g., genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC), and backtracking search algorithm (BSA) and some modern developed techniques, e.g., the lightning search algorithm (LSA) and whale optimization algorithm (WOA), and many more. The entire set of such techniques is classified as algorithms based on a population where the initial population is randomly created. Input parameters are initialized within the specified range, and they can provide optimal solutions. This paper emphasizes enhancing the neural network via optimization algorithms by manipulating its tuned parameters or training parameters to obtain the best structure network pattern to dissolve the problems in the best way. This paper includes some results for improving the ANN performance by PSO, GA, ABC, and BSA optimization techniques, respectively, to search for optimal parameters, e.g., the number of neurons in the hidden layers and learning rate. The obtained neural net is used for solving energy management problems in the virtual power plant system.
This paper introduces a novel optimal schedule controller to manage renewable energy resources (RESs) in virtual power plant (VPP) using binary particle swarm optimization (BPSO) algorithm. It is crucial to minimize the costs giving priority for sustainable resources use instead of purchasing from the national grid. The effectiveness of the proposed approach is examined by the IEEE 14 bus system containing microgrids (MGs) integrated with RESs in the form of VPP. Real load demand recorded is used to model and simulate the test case studies of the system for 24 h in Perlis, Malaysia. Moreover, weather data collected from the Malaysian Meteorological Department such as wind, solar, fuel, and battery status data are used in the BPSO to find the best ON and OFF schedules. The results found that the developed BPSO algorithm is robust in reducing energy consumption and emissions of the VPP. This study contributes to the development of an optimization algorithm for an optimal scheduling controller of MG integrated VPP in order to reduce carbon emissions and manage sustainable energy. Finally, a comparative analysis of the optimal algorithms over conventional justifies the use of RESs integration and validates the developed BPSO for sustainable energy management and emissions reduction. INDEX TERMS Virtual power plant, microgrid, energy management, carbon reduction, scheduling controller, optimization.
Malaysia's framework for energy development was established in the early 1970s. Henceforth, many successive policies were introduced as potential resources for electricity generation and utilization. Currently, as a signatory to the United Nations Framework Convention on Climate Change, Malaysia is sparing no effort to comply with the policy to meet the challenges of mitigating over-dependence on fossil fuels, reducing carbon levels, and achieving sustainable
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.