The use of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) in coronavirus disease 2019 (COVID-19) patients has been claimed as associated with the risk of COVID-19 infection and its subsequent morbidities and mortalities. These claims were resulting from the possibility of upregulating the expression of angiotensin-converting enzyme 2 (ACE2), facilitation of SARS-CoV-2 entry, and increasing the susceptibility of infection in such treated cardiovascular patients. ACE2 and renin-angiotensin-aldosterone system (RAAS) products have a critical function in controlling the severity of lung injury, fibrosis, and failure following the initiation of the disease. This review is to clarify the mechanisms beyond the possible deleterious effects of angiotensin II (Ang II), and the potential protective role of angiotensin 1–7 (Ang 1–7) against pulmonary fibrosis, with a subsequent discussion of the latest updates on ACEIs/ARBs use and COVID-19 susceptibility in the light of these mechanisms and biochemical explanation.
In this study, a set of novel benzoxazole derivatives were designed, synthesised, and biologically evaluated as potential VEGFR-2 inhibitors. Five compounds (
12d
,
12f
,
12i
,
12l
, and
13a
) displayed high growth inhibitory activities against HepG2 and MCF-7 cell lines and were further investigated for their VEGFR-2 inhibitory activities. The most potent anti-proliferative member
12 l (
IC
50
= 10.50 μM and 15.21 μM against HepG2 and MCF-7, respectively
)
had the most promising VEGFR-2 inhibitory activity (IC
50
= 97.38 nM). A further biological evaluation revealed that compound
12l
could arrest the HepG2 cell growth mainly at the Pre-G1 and G1 phases. Furthermore, compound
12l
could induce apoptosis in HepG2 cells by 35.13%. likely, compound
12l
exhibited a significant elevation in caspase-3 level (2.98-fold) and BAX (3.40-fold), and a significant reduction in Bcl-2 level (2.12-fold). Finally, docking studies indicated that
12l
exhibited interactions with the key amino acids in a similar way to sorafenib.
BackgroundRheumatic fever (RF) is the result of an autoimmune response to pharyngitis caused by infection with Streptococcus pyogenes. RF is most prevalent in Africa and the Middle East. Rheumatic heart disease (RHD) is the most serious complication of RF. Mannose-binding lectin 2 gene (MBL2) has been reported to be correlated with different cardiac conditions. In Egyptian patients as a new studied ethnic population, it is the first time to evaluate the association between MBL2 gene polymorphism rs1800450 and RF with and without RHD.MethodsOne hundred and sixty RF patients (80 with RHD and 80 without RHD) and eighty healthy ethnically matched controls were studied. MBL2 (rs1800450) was genotyped by real-time PCR using TaqMan® allele discrimination assay. The MBL level was measured by ELISA. Westergren erythrocytes sedimentation rate (ESR), anti-streptolysin O titer (ASOT), C-reactive protein (CRP) and complements (C3 and C4) were determined.ResultsThe AA genotype with high production of MBL was associated with increased risk of RHD more than the B allele carrying subjects. However, MBL2 genotype related to the low production of MBL was more frequently observed in those patients without RHD.ConclusionsOur results suggested the involvement of MBL2 (rs1800450) polymorphism and its protein in RHD pathogenesis. Also, it might be a promising future strategy to utilize this polymorphism to help differentiate patients with RHD from those without RHD.
Aim: To investigate the change in a serum level of copeptin, a neuroendocrine biomarker, in differentiating grades of COVID-19 severity on admission time and to find its diagnostic potential. Materials & Methods: 160 COVID-19 patients were classified according to disease severity into 80 mild to moderate and 80 severe patients. Serum copeptin level was assessed by ELISA on their admission time. Besides, serum CRP, ferritin and D-dimer were estimated. Results: Severe COVID-19 patients showed higher serum copeptin level in comparison to mild to moderate cases, with diagnostic potential to distinguish disease severity with 93.33% sensitivity and 100% specificity at cut-off value >18.5 Pmol/l. Conclusion: Serum copeptin was remarkably increased with COVID-19 severity with reasonable differentiation potential for recently admitted patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.