We analyzed the coseismic and early postseismic deformation of the 2015, Mw 8.3 Illapel earthquake by inverting 13 continuous GPS time series. The seismic rupture concentrated in a shallow (<20 km depth) and 100 km long asperity, which slipped up to 8 m, releasing a seismic moment of 3.6 × 1021 Nm (Mw = 8.3). After 43 days, postseismic afterslip encompassed the coseismic rupture. Afterslip concentrated in two main patches of 0.50 m between 20 and 40 km depth along the northern and southern ends of the rupture, partially overlapping the coseismic slip. Afterslip and aftershocks confined to region of positive Coulomb stress change, promoted by the coseismic slip. The early postseismic afterslip was accommodated ~53% aseismically and ~47% seismically by aftershocks. The Illapel earthquake rupture is confined by two low interseismic coupling zones, which coincide with two major features of the subducting Nazca Plate, the Challenger Fault Zone and Juan Fernandez Ridge.
On 1 April 2014, an earthquake with moment magnitude Mw 8.2 occurred off the coast of northern Chile, generating a tsunami that prompted evacuation along the Chilean coast. Here tsunami characteristics are analyzed through a combination of field data and numerical modeling. Despite the earthquake magnitude, the tsunami was moderate, with a relatively uniform distribution of runup, which peaked at 4.6 m. This is explained by a concentrated maximal slip at intermediate depth on the megathrust, resulting in a rapid decay of tsunami energy. The tsunami temporal evolution varied, with locations showing sustained tsunami energy, while others showed increased tsunami energy at different times after the earthquake. These are the result of the interaction of long period standing oscillations and trapped edge wave activity controlled by inner shelf slopes. Understanding these processes is relevant for the region, which still posses a significant tsunamigenic potential.
After 137 years without a great earthquake, the M w 8.1 Pisagua event of 1 April 2014 occurred in the central portion of the southern Peru-northern Chile subduction zone. This megathrust earthquake was preceded by more than 2 weeks of foreshock activity migrating ~3.5 km/ day toward the mainshock hypocenter. This foreshock sequence was triggered by an M w 6.7 earthquake on a reverse fault in the upper plate that strikes at a high angle to the trench, similar to well-documented reverse faults onshore. These margin-oblique reverse faults accommodate north-south shortening resulting from subduction across a plate boundary that is curved in map view. Reverse slip on the crustal fault unclamped the subduction interface, precipitating the subsequent megathrust foreshock activity that culminated in the great Pisagua earthquake. The combination of crustal reverse faults and a curved subduction margin also occurs in Cascadia and northeastern Japan, indicating that there are two additional localities where great megathrust earthquakes may be triggered by upper plate fault activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.