Graphene quantum dots (GQDs), impressive materials with enormous future potential, are reviewed from their inception, including different precursors. Considering the increasing burden of industrial and ecological bio-waste, there is an urgency to develop techniques which will convert biowaste into active moieties of interest. Amongst the various materials explored, we selectively highlight the use of potential carbon containing bioprecursors (e.g. plant-based, amino acids, carbohydrates), and industrial waste and its conversion into GQDs with negligible use of chemicals. This review focuses on the effects of different processing parameters that affect the properties of GQDs, including the surface functionalization, paradigmatic characterization, toxicity and biocompatibility issues of bioprecursor derived GQDs. This review also examines current challenges and s the ongoing exploration of potential bioprecursors for ecofriendly GQD synthesis for future applications. This review sheds further light on the electronic and optical properties of GQDs along with the effects of doping on the same. This review may aid in future design approaches and applications of GQDs in the biomedical and materials design fields.
Present investigation deals with, tacrolimus eluting, self-expandable, biodegradable stent fabricated by solvent casting method. The design was based on shape memory polymers, which possess the ability to memorize temporary shape that can substantially differ from their initial permanent shape. A set of biodegradable polymers blend was used such as poly-lactic acid (PLA) and poly-l-glycolic acid (PLGA) to study the shape memory effect of polymer. The prepared stent was assessed for various parameters like Scanning Electron Microscopy (SEM), In-vitro and Ex vivo expansion, Drug content, In-vitro drug release, Haemocompatibility, Differential Scanning Calorimetry (DSC), Fourier Transform Infrared spectroscopy (FTIR), and Textural Characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.