Cells from Cockayne syndrome patients and a mouse model of the disease show increased metabolism as a result of impaired autophagy-mediated removal of damaged mitochondria.
Background: RECQL4 is a RecQ helicase mutated in Rothmund-Thomson Syndrome (RTS) and has a functional role in DNA replication and repair. Results: RECQL4-depleted and RTS patient cells show telomere abnormalities and that RECQL4 interacts with telomeric DNA and related proteins. Conclusion: RECQL4 is involved in telomere maintenance. Significance: The RecQ helicase RECQL4 is involved in telomere replication and maintenance. This establishes a connection between telomere function and a disease with premature aging phenotype.
Summary
The chromatin-remodeler ATRX is frequently lost in cancer cells that use ALT (alternative lengthening of telomeres) for telomere maintenance, but its function in telomere recombination is unknown. Here we show that loss of ATRX suppresses the timely resolution of sister telomere cohesion that normally occurs prior to mitosis. In the absence of ATRX, the histone variant macroH2A1.1 binds to the poly(ADP-ribose) polymerase tankyrase 1, preventing it from localizing to telomeres and resolving cohesion. The resulting persistent telomere cohesion promotes recombination between sister telomeres, while it suppresses inappropriate recombination between non-sisters. Forced resolution of sister telomere cohesion induces excessive recombination between non-homologs, genomic instability, and impaired cell growth, indicating the ATRX-macroH2A1.1-tankyrase axis as a potential therapeutic target in ALT tumors.
SUMMARY
RECQL4 is associated with Rothmund-Thomson Syndrome (RTS), a rare autosomal recessive disorder characterized by premature aging, genomic instability and cancer predisposition. RECQL4 is a member of the RecQ-helicase family, and has many similarities to WRN protein, which is also implicated in premature aging. There is no information about whether any of the RecQ helicases play roles in mitochondrial biogenesis, which is strongly implicated in the aging process. Here, we used microscopy to visualize RECQL4 in mitochondria. Fractionation of human and mouse cells also showed that RECQL4 was present in mitochondria. Q-PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4-deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the mitochondrial reserve capacity after lentiviral knockdown of RECQL4 in two different primary cell lines. Additionally, biochemical assays with RECQL4, mitochondrial transcription factor A and mitochondrial DNA polymerase γ showed that the polymerase inhibited RECQL4’s helicase activity. RECQL4 is the first 3′ to 5′ RecQ helicase to be found in both human and mouse mitochondria and the loss of RECQL4 alters mitochondrial integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.