TNF-alpha breaks down the barrier integrity of corneal endothelium, concomitant with the disruption of PAMR, remodeling of AJC, and disassembly of microtubules. These effects are mediated by transient activation of p38 MAP kinase. Thus, the TNF-alpha-induced barrier dysfunction in the corneal endothelium can be suppressed by inhibitors of p38 MAP kinase and agents downstream of the kinase that affect the cytoskeleton.
Microtubule disassembly breaks down the barrier integrity in a number of epithelial and endothelial monolayers. This study has investigated effects of TNF-α, which is implicated in corneal allograft rejection, on microtubules and barrier integrity in cultured bovine corneal endothelial cells. Exposure to TNF- α led to disassembly of the microtubules, and also caused disruption of the perijunctional actomyosin ring (PAMR). As a measure of barrier integrity, trans-endothelial electrical resistance (TER) was determined based on electrical cell-substrate impedance sensing in realtime. Exposure to TNF- α caused a slow decline in TER for > 20 h, and a similar exposure to cells grown on porous culture inserts led to a significant increase in permeability to FITC dextran. These changes, indicating a loss of barrier integrity, were also reflected by dislocation of ZO-1 at the cell border and disassembly of cadherins. These effects of TNF- α were inhibited upon stabilization of microtubules by pre-treatment with paclitaxel or epothilone B. Microtubule stabilization may be a useful strategy to overcome (TNF-α)-induced loss of the barrier integrity of corneal endothelium during inflammation associated with transplant rejection and uveitis.
Background: Osteoblast proliferation and differentiation are critical for bone formation. Results: Megakaryocytes increase osteoblast number and BrdU incorporation and induce cytoskeletal remodeling and the differential expression of Pyk2 isoforms in osteoblasts. Conclusion: Megakaryocytes stimulate osteoblast proliferation and alter the ratio of alternatively spliced Pyk2 isoforms. Significance: Pyk2 may be an important target for treatments aimed at increasing skeletal bone formation.
Increased contractility of the peri-junctional actomyosin ring (PAMR) breaks down the barrier integrity of corneal endothelium. This study has examined the effects of microtubule disassembly on Myosin Light Chain (MLC) phosphorylation, a biochemical marker of actomyosin contraction, and barrier integrity in monolayers of cultured bovine corneal endothelial cells (BCEC).Exposure to nocodazole, which readily induced microtubule disassembly, led to disruption of the characteristically dense assembly of cortical actin cytoskeleton at the apical junctional complex (i.e., PAMR) and dispersion of ZO-1 from its normal locus. Nocodazole also led to an increase in phosphorylation of MLC. Concomitant with these changes, nocodazole caused an increase in permeability to HRP and FITC dextran (10 kDa) and a decrease in trans-endothelial electrical resistance (TER). Y-27632 (a Rho kinase inhibitor) and forskolin (known to inhibit activation of RhoA through direct elevation of cAMP) opposed the nocodazole-induced MLC phosphorylation, decrease in TER, and dispersion of ZO-1. Thrombin, which breaks down the barrier integrity of BCEC monolayers, also induced microtubule disassembly and MLC phosphorylation. Pretreatment with paclitaxel to stabilize microtubules opposed the thrombin effects. These results suggest that microtubule disassembly breaks down the barrier integrity of BCEC through activation of RhoA and subsequent disruption of the PAMR. The thrombin effect also highlights that signaling downstream of GPCRs can also influence the organization of microtubules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.