A part to be injection molded is evaluated by simulation for warpage analysis. The plastic part is a supporting plate to be used in the oil filter and it’s made out of nylon material. The effect of various parameters from design to processing of plastic parts is considered and validated by simulation results. The research involved in this was designing mould, computer-aided engineering, simulation analysis, and determination of plastic part processing conditions. In this work PA66 (Grade name – Zytel 70G13HS1LNC010) material is used and the material contains 13 % of fiber. Fiber orientation is nothing but the distribution of plastic melt inside the cavity and it also plays important role in deciding the warpage of part. The effect of process parameters on part warpage is investigated from various aspects in comparison with the conventional runner system. Hot runner mould system with innovative cooling channel designs is good results-driven. Results of simulations reveal that elevated mould temperature reduces the unwanted freezing time during the injection phase and thus improves mouldability and enhances part quality. Under similar mould temperature conditions, the effect of process parameters on warpage decreases according to the following order, packing time, packing pressure, melt temperature, injection pressure, and cooling time respectively.
Polymers of the same family show distinct behavior with each other and because of this, the end prediction after molding the part is very difficult. Simulations result does not always match the product. For close substitution in absence of exactly known material composition, the equivalent grade of the same MFI may be used. However, the MFI is a poor indicator of the rheological behavior to be comprehend for accurate simulation. This research analyzes the appropriate parameters for the rheology of polymers, in the same class that are appropriate.
Warpage is one of the most crucial problems in injection molded products. Factors affecting warpage include Material, Part geometry, gate location, Fiber content & orientation, temperature, etc. Since many factors cause shrinkage and warpage, it is very difficult to distinguish the predominant factor. In the present study, we have focused on contribution of fiber content on warpage of injection molded part. Basic requirement of the part is flatness at sealing area within given tolerance. The required flatness should be within a given tolerance for effective functioning of the component. Flow simulation software has been used to assess the effect of fiber content on warpage and in turn flatness of the component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.