Despite the widespread application of microarray imaging for biomedical imaging research, barriers still exist regarding its reliability for clinical use. A critical major problem lies in accurate spot segmentation and the quantification of gene expression level (mRNA) from the microarray images. A variety of commercial and research freeware packages are available, but most cannot handle array spots with complex shapes such as donuts and scratches. Clustering approaches such as k-means and mixture models were introduced to overcome this difficulty, which use the hard labeling of each pixel. In this paper, we apply fuzzy clustering approaches for spot segmentation, which provides soft labeling of the pixel. We compare several fuzzy clustering approaches for microarray analysis and provide a comprehensive study of these approaches for spot segmentation. We show that possiblistic c-means clustering (PCM) provides the best performance in terms of stability criterion when testing on both a variety of simulated and real microarray images. In addition, we compared three statistical criteria in measuring gene expression levels and show that a new asymptotically unbiased statistic is able to quantify the gene expression level more accurately.
Despite the widespread application of microarray imaging for biomedical research, barriers still exist regarding its reliability and reproducibility for clinical use. A critical problem lies in accurate spot segmentation and quantification of gene expression level (mRNA) from microarray images. A variety of commercial and research freeware packages are available, but most cannot handle array spots with complex shapes such as donuts and scratches. Clustering approaches such as k-means and mixture models were introduced to overcome this difficulty, which used the hard labeling of each pixel. In this paper, we introduce a more sophisticated fuzzy clustering based method. We show that possiblistic c-means clustering performed the best among several fuzzy clustering approaches. In addition, we compared three statistical criteria in measuring gene expression levels and show that a new unbiased statistic is able to quantify the gene expression level more accurately. The proposed algorithms have been tested on a variety of simulated and real microarray images, demonstrating their better performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.