Grouping and clustering alerts for intrusion detection based on the similarity of features is referred to as structurally base alert correlation and can discover a list of attack steps. Previous researchers selected different features and data sources manually based on their knowledge and experience, which lead to the less accurate identification of attack steps and inconsistent performance of clustering accuracy. Furthermore, the existing alert correlation systems deal with a huge amount of data that contains null values, incomplete information, and irrelevant features causing the analysis of the alerts to be tedious, time-consuming and error-prone. Therefore, this paper focuses on selecting accurate and significant features of alerts that are appropriate to represent the attack steps, thus, enhancing the structural-based alert correlation model. A two-tier feature selection method is proposed to obtain the significant features. The first tier aims at ranking the subset of features based on high information gain entropy in decreasing order. The second tier extends additional features with a better discriminative ability than the initially ranked features. Performance analysis results show the significance of the selected features in terms of the clustering accuracy using 2000 DARPA intrusion detection scenario-specific dataset.
The Internet of Things (IoT) concept has emerged to improve people’s lives by providing a wide range of smart and connected devices and applications in several domains, such as green IoT-based agriculture, smart farming, smart homes, smart transportation, smart health, smart grid, smart cities, and smart environment. However, IoT devices are at risk of cyber attacks. The use of deep learning techniques has been adequately adopted by researchers as a solution in securing the IoT environment. Deep learning has also successfully been implemented in various fields, proving its superiority in tackling intrusion detection attacks. Due to the limitation of signature-based detection for unknown attacks, the anomaly-based Intrusion Detection System (IDS) gains advantages to detect zero-day attacks. In this paper, a systematic literature review (SLR) is presented to analyze the existing published literature regarding anomaly-based intrusion detection, using deep learning techniques in securing IoT environments. Data from the published studies were retrieved from five databases (IEEE Xplore, Scopus, Web of Science, Science Direct, and MDPI). Out of 2116 identified records, 26 relevant studies were selected to answer the research questions. This review has explored seven deep learning techniques practiced in IoT security, and the results showed their effectiveness in dealing with security challenges in the IoT ecosystem. It is also found that supervised deep learning techniques offer better performance, compared to unsupervised and semi-supervised learning. This analysis provides an insight into how the use of data types and learning methods will affect the performance of deep learning techniques for further contribution to enhancing a novel model for anomaly intrusion detection and prediction.
Network Intrusion Detection Systems (NIDS) are designed to safeguard the security needs of enterprise networks against cyber-attacks. However, NIDS networks suffer from several limitations, such as generating a high volume of low-quality alerts. Moreover, 99% of the alerts produced by NIDSs are false positives. As well, the prediction of future actions of an attacker is one of the most important goals here. The study has reviewed the state-of-the-art cyber-attack prediction based on NIDS Intrusion Alert, its models, and limitations. The taxonomy of intrusion alert correlation (AC) is introduced, which includes similarity-based, statistical-based, knowledge-based, and hybrid-based approaches. Moreover, the classification of alert correlation components was also introduced. Alert Correlation Datasets and future research directions are highlighted. The AC receives raw alerts to identify the association between different alerts, linking each alert to its related contextual information and predicting a forthcoming alert/attack. It provides a timely, concise, and high-level view of the network security situation. This review can serve as a benchmark for researchers and industries for Network Intrusion Detection Systems’ future progress and development.
The quality or state of being secure is the crucial concern of our daily life usage of any network. However, with the rapid breakthrough in network technology, attacks are becoming more trailblazing than defenses. It is a daunting task to design an effective and reliable intrusion detection system (IDS), while maintaining minimal complexity. The concept of machine learning is considered an important method used in intrusion detection systems to detect irregular network traffic activities. The use of machine learning is the current trend in developing IDS in order to mitigate false positives (FP) and False Negatives (FN) in the anomalous IDS. This paper targets to present a holistic approach to intrusion detection system and the popular machine learning techniques applied on IDS systems, bearing In mind the need to help research scholars in this continuous burgeoning field of Intrusion detection (ID).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.