Bus-bus beban selama ini hanya dianggap sebagai beban saja tanpa dianggap sebagai elemen jaringan. Menganggap beban sebagai elemen jaringan berarti bus-bus beban dapat dimasukkan ke dalam admitansi atau impedansi jaringan. Hasil iterasi untuk mencapai konvergen, analisis aliran daya dengan menganggap beban sebagai elemen jaringan (170 iterasi) lebih banyak dibandingkan analisis daya standar (168 iterasi). Ini membuktikan analisis daya standar pada sistem jaringan IEEE 14 Bus mempunyai tingkat iterasi yang lebih baik. Kecepatan iterasi untuk mencapai konvergensi berbanding lurus dengan tingkat iterasinya, semakin sedikit tingkat iterasinya maka semakin cepat untuk mencapai konvergen. Total rugi-rugi daya, pada pada kedua metode adalah sebesar 0.4315 + 0.6764i (pu) dengan nilai konvergensi sebesar 0.00001.
The main business focus of an electric power service provider is to meet the consumers’ demand in time and quality as required. The increase of electric load demand is influenced by various factors, for example the development of technology, business, region, standard of life, climatic and weather changes, or even consumers behavior. They must be considered by the power service provider in order to anticipate the load increase beyond the company’s capability and the existing power generator capacity. This study focuses on comparing the performances of two methods in electric load demand forecasting. The Genetic Algorithm-Support Vector Machine (GA-SVM) and the Autoregressive Integrated Moving Average (ARIMA) methods are applied for the prediction of daily load in Malang city, Indonesia, which is under the service coverage of the Indonesian national electricity provider, PT PLN Sub Unit P3B Jawa Timur-Bali. Two specific influencing factors, temperature and precipitation, are considered. The performance comparison is based on the error parameters of Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The results of study indicate that the use of GA-SVM method provides better performance than that of the ARIMA method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.