Natural calamities are often unforeseen and cause massive destruction. It is extremely difficult to predict natural disasters. Existing machine learning techniques are not reliable enough to find the affected countries due to earthquakes and rising sea levels. The aim of this paper is to use predictive analysis to find the countries that will be affected by earthquakes and rising sea levels. Also, the purpose is to see how machine learning techniques perform in terms of sudden calamities like earthquakes or slow calamities like rising sea level. The results was deduced by data analysis, and deep learning techniques like Long-Short Term Memory (LSTM). It was found out that using the approached method in this paper can accurately identify the countries that are going to be affected and predict both earthquake and sea level anomalies accurately. For earthquake, the model was able to capture the happening of earthquake events into a certain quarter of the year with the Root Mean Square Error (RMSE) of 0.504. And for sea level rise, the RMSE was 0.064. It was concluded that Deep learning techniques (e.g.-LSTM) work well with slow changes like sea level anomaly rather than earthquakes. The techniques used in this paper can be upgraded further in the future to find and help more endangered countries to be prepared better against these sudden calamities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.