This paper presents a state-of-the-art review of research on the utilization of fibers (predominantly derived from waste materials) as reinforcement in adobe brick production. Recycling of these wastes provides sustainable construction materials and helps to protect the environment. Specimen preparation and test procedures are outlined. The effects of addition of these wastes on the physical and mechanical properties of adobe bricks as presented in the literature, are investigated. The main results for each additive are presented and discussed. It is concluded that improved adobe brick properties can be expected with the addition of combination of waste additives. The use of waste materials in the construction industry is generally of interest and useful for engineers and designers seeking sustainable solutions in construction. It is also of interest to researchers actively seeking to develop methodical approaches to quantifying, optimising and testing the performance in use of such waste material additives.
In this paper, the physical, durability and mechanical properties of soil bricks reinforced with chicken feather fibres (CFF) and sugarcane bagasse fibres (SBF) were studied. The adopted optimum lengths of 15-mm of CFF and SBF were randomly distributed in the soil mix at 1%, 3%, 5%, 7%, 9% and 11% by weight. In total, 525 samples of cubic (350) and prismatic (175) soil samples were prepared for each fibre type and tested in accordance with the guidance in the British standards for bulk density, water absorption, compressive strength and tensile strength at 14, 28, 56, 90 and 180 days. With the addition of 7% CFF and 5% SBF, soil brick samples were found to be 98.8% and 78.7% stronger respectively in compression compared to the control mix. Based on the experimental results the stress-strain model describing the soil bricks response to compressive loading for each fibre type was obtained via regression analysis.This study contributes original data to the characterization of soil bricks and provides reference values that can be considered for design purposes. The soil bricks thus developed will contribute to the provision of affordable and sustainable housing construction across the world, particularly in developing countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.