Developing and characterizing green solvents with low toxicity and cost is one of the most important issues in chemistry. Deep Eutectic Solvents (DESs), in this regard, have shown tremendous promise. Compared to popular organic solvents, DESs possess negligible VOCs and are non-flammable. Compared to ionic liquids, which share many characteristics but are ionic compounds and not ionic mixtures, DESs are cheaper to make, much less toxic and mostly biodegradable. An estimate of the polarity associated with DESs is essential if they are to be used as green alternatives to common organic solvents in industries and academia. As no one physical parameter can satisfactorily represent solute-solvent interactions within a medium, polarity of DESs is assessed through solvatochromic optical spectroscopic responses of several UV-vis absorbance and molecular fluorescence probes. Information on the local microenvironment (i.e., the cybotactic region) that surrounds several solvatochromic probes [betaine dye, pyrene, pyrene-1-carboxaldehyde, 1-anilino-8-naphthalene sulfonate (ANS), p-toluidinyl-6-naphthalene sulfonate (TNS), 6-propionyl-2-(dimethylaminonaphthalene) (PRODAN), coumarin-153, and Nile Red] for four common and popular DESs formed from choline chloride combined with 1,2-ethanediol, glycerol, urea, and malonic acid, respectively, in 1 : 2 molar ratios termed ethaline, glyceline, reline, and maline is obtained and used to assess the effective polarity afforded by each of these DESs. The four DESs as indicated by these probe responses are found to be fairly dipolar in nature. Absorbance probe betaine dye and fluorescence probes ANS, TNS, PRODAN, coumarin-153, and Nile Red, whose solvatochromic responses are based on photoinduced charge-transfer, imply ethaline and glyceline, DESs formed using alcohol-based H-bond donors, to be relatively more dipolar in nature as compared to reline and maline. The pyrene polarity scale, which is based on polarity-induced changes in vibronic bands, indicates reline, the DES composed of urea as the hydrogen bond donor, to be significantly more dipolar than the other three DESs. Response of pyrene-1-carboxaldehyde, a polarity probe based on inversion of n-π* and π-π* states, hints at maline to be the most dipolar of the four DESs. The molecular structure of the H-bond donor in a DES clearly controls the dipolarity afforded by the DES. H-bonding and other specific solute-solvent interactions are found to play an important role in solvatochromic probe behavior for the four DESs. The cybotactic region of a probe dissolved in a DES affords information on the polarity of the DES towards solutes of similar nature and functionality.
Deep eutectic solvents (DESs) have shown tremendous promise as green solvents with low toxicity and cost. Understanding molecular aggregation processes within DESs will not only enhance the application potential of these solvents but also help alleviate some of the limitations associated with them. Among DESs, those comprising choline chloride and appropriate hydrogen-bond donors are inexpensive and easy to prepare. On the basis of fluorescence probe, electrical conductivity, and surface tension experiments, we present the first clear lines of evidence for self-aggregation of an anionic surfactant within a DES containing a small fraction of water. Namely, well-defined assemblies of sodium dodecyl sulfate (SDS) apparently form in the archetype DES Reline comprising a 1:2 molar mixture of choline chloride and urea. Significant enhancement in the solubility of organic solvents that are otherwise not miscible in choline chloride-based DESs is achieved within Reline in the presence of SDS. The remarkably improved solubility of cyclohexane within SDS-added Reline is attributed to the presence of spontaneously formed cyclohexane-in-Reline microemulsions by SDS under ambient conditions. Surface tension, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), density, and dynamic viscosity measurements along with responses from the fluorescence dipolarity and microfluidity probes of pyrene and 1,3-bis(1-pyrenyl)propane are employed to characterize these aggregates. Such water-free oil-in-DES microemulsions are appropriately sized to be considered as a new type of nanoreactor.
Based on fluorescence probe, electrical conductivity, surface tension, small-angle X-ray/dynamic light scattering, and transmission electron microscopy experiments, we present the first clear lines of evidence for self-aggregation of cationic surfactants of the n-alkyltrimethylammonium family within an archetypical deep eutectic solvent comprised of a 1:2 molar mixture of choline chloride and glycerol. Estimated thermodynamic parameters suggest this self-aggregation process to be less entropically driven than that in water. These novel water-free self-assemblies might serve as dynamic soft templates to direct the growth of size- or shape-tailored nanoparticles within water-restricted media.
Deep eutectic solvents (DESs) have shown potential as novel media to support molecular aggregation. The self-aggregation behavior of two common and popular carbocyanine dyes, 5,5',6,6'-tetrachloro-1,1'-diethyl-3,3'-di(4-sulfobutyl)-benzimidazole carbocyanine (TDBC) and 5,5'-dichloro-3,3'-di(3-sulfopropyl)-9-methyl-benzothiacarbo cyanine (DMTC), is investigated within DES-based systems under ambient conditions. Although TDBC is known to form J-aggregates in basic aqueous solution, DMTC forms H-aggregates under similar conditions. The DESs used, glyceline and reline, are composed of salt choline chloride and two vastly different H-bond donors, glycerol and urea, respectively, in 1:2 mol ratios. Both DESs in the presence of base are found to support J-aggregates of TDBC. These fluorescent J-aggregates are characterized by small Stokes' shifts and subnanosecond fluorescence lifetimes. Under similar conditions, DMTC forms fluorescent H-aggregates along with J-aggregates within the two DES-based systems. The addition of cationic surfactant cetyltrimethylammonium bromide (CTAB) below its critical micelle concentration (cmc) to a TDBC solution of aqueous base-added glyceline shows the prominent presence of J-aggregates, and increasing the CTAB concentration to above cmc results in the disruption of J-aggregates and the formation of unprecedented H-aggregates. DMTC exclusively forms H-aggregates within a CTAB solution of aqueous base-added glyceline irrespective of the surfactant concentration. Anionic surfactant, sodium dodecylsulfate (SDS), present below its cmc within aqueous base-added DESs supports J-aggregation by TDBC; for similar SDS addition, DMTC forms H-aggregates within the glyceline-based system whereas both H- and J-aggregates exist within the reline-based system. A comparison of the carbocyanine dye behavior in various aqueous base-added DES systems to that in aqueous basic media reveals contrasting aggregation tendencies and/or efficiencies. Surfactants as additives are demonstrated to control and modulate carbocyanine dye self-aggregation within DES-based media. The unique nature of DESs as alternate media toward affecting cyanine dye aggregation is highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.