Electrochemical carbon dioxide (CO2) reduction is considered to be an efficient strategy to produce usable fuels and overcome the concerns regarding global warming. For this purpose, an efficient, earth abundant, and a low cost catalyst has to be designed. It has been found that graphene‐based materials could be promising candidates for CO2 conversion because of their unique physical, mechanical, and electronic properties. In addition, the surface of graphene‐based materials can be modified by using different strategies, including doping, defect engineering, producing composite structures, and wrapping shapes. In this review, the fundamentals of electrochemical CO2 reduction and recent progress of graphene‐based catalysts are investigated. Furthermore, recent studies on graphene‐based materials for CO2 reduction are summarized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.