It is well known that female reproduction ability decreases during the forth decade of life due to age-related changes in oocyte quality and quantity; although the number of women trying to conceive has today increased remarkably between the ages of 36 to 44. The causes of reproductive aging and physiological aspects of this phenomenon are still elusive. With increase in the women's age, during Assisted Reproductive Technologies (ART) we have perceived a significant decline in the number and quality of retrieved oocytes, as well as in ovarian follicle reserves. This is because of increased aneuploidy due to factors such as spindle apparatus disruption; oxidative stress and mitochondrial damage. The aim of this review paper is to study data on the potential role of the aging process impacting oocyte quality and female reproductive ability. We present the current evidence that show the decreased oocyte quality with age, related to reductions in female reproductive outcome. The aging process is complicated and it is caused by many factors that control cellular and organism life span. Although the factors responsible for reduced oocyte quality remain unknown, the present review focuses on the potential role of ovarian follicle environment, oocyte structure and its organelles. To find a way to optimize oocyte quality and ameliorate clinical outcomes for women with aging-related causes of infertility.
Background To evaluate factors affecting oocyte/embryo quality in PolyCystic Ovary Syndrome (PCOS) patients undergoing Assisted Reproductive Technology (ART) cycles. Methods This case-control retrospective study was performed on PCOS patients referred to the infertility department of Imam Khomeini Hospital in Ahvaz from October 2017 to September 2019. Demographic and reproductive characterizations including age, gender, abortion history and infertility type (primary and secondary infertility) were extracted from patient’s records. TSH, AMH, LH, FSH, prolactin, lipid profile and blood glucose was measured. Biochemistry pregnancy was checked by determination of serum βHCG level and then, clinical pregnancy was confirmed by observing of pregnancy sac and fetal heart rate using Transvaginal USS. Results One-hundred thirty-five patients include 45 PCOS and 90 Non-PCOS patients with mean age of 31.93 ± 5.04 and 30.8 ± 5.38 (p = 0.24) were considered as case and control groups respectively. Retrieved oocyte numbers were significantly higher in PCOS patients (p = 0.024), but there was no significant difference in number of oocyte subtypes (MI, MII and GV) between two groups. The embryo numbers and its subtypes did not differ significantly in both groups. The clinical pregnancy rate was insignificantly lower in PCOS patients (p = 0.066) and there was a significant correlation between retrieved oocyte numbers with age(r= -0.2, p= 0.022) and AMH level (r = 0.433, p < 0.0001) respectively. Cholesterol level had shown a positive significant correlation with number of MI oocytes (r = 0.421, p = 0.026) and MII oocytes significantly affected by age (r= -0.250, p = 0.004) and AMH level (r = 0.480, p < 0.0001). Using Receiver operation characteristic (ROC) curve analysis, the cut-off value of total number of oocytes was > 10.5 with area under curve of 0.619±0.054(sensitivity 55.56% and specificity 69.66%) Conclusions The results of this study showed that although the number of oocytes in PCOS patients was significantly higher than non-PCOS patients, the quality of oocytes was not statistically different. The number and quality of embryos were not significantly different in both groups. Our results indicated a significant relationship between the level of AMH and the number of retrieved oocytes and embryos. We found there is a significant correlation between cholesterol level and number of MI oocytes.
BackgroundFerula assa foetida commonly consumed as a healthy beverage has been demonstrated to have various biological activities, including antioxidation, anti-obesity and anti-cancer.ObjectiveOur study aims to investigate the antitumor effect of asafoetida in vivo using mouse mammary carcinoma 4T1 cells.Materials and methodsIn the study, female BALB/c mice were divided into two groups (n = 6), which were control (untreated) and other group of mice with breast cancer treated with 100 mg/kg of asafoetida, respectively, by oral gavage. All mice were injected into the mammary fat pad with 4T1 cells (1 × 105 4T1 cells/0.1 ml of phosphate buffer solution). Asafoetida was administered on day 15 after the tumor had developed for 3 weeks. At end of experiment, tumor weight, tumor volume and tumor burden were measured and lung, liver, kidney and tumor were harvested and sections were prepared for histopathological analysis. Lipoxygenase inhibitory and antioxidant activity of asafoetida was also determined.ResultsOur results showed that treatment with asafoetida was effective in decreasing the tumor weight and tumor volume in treated mice. Body weight significantly increased in female BALB/c mice against control. Apart from the antitumor effect, asafoetida decreased lung, liver and kidney metastasis and also increased areas of necrosis in the tumor tissue respectively.ConclusionsThe present study demonstrated that asafoetida has potent antitumor and antimetastasis effects on breast cancer and is a potential source of natural antitumor products.
Objective: Vitamin D receptor (VDR) is expressed in human spermatozoa. However, the role of vitamin D (VD) in human male reproduction has not yet been clarified. In this study, effects of VD on sperm parameters and its apoptosis in asthenozoospermic and healthy men were evaluated. Methods: The study was carried out on discharged semen samples of 80 asthenozoospermic and healthy men. The samples were divided into control and experimental groups (received 20 µMol of VD). This study assessed sperm motility using the Makler chamber, their morphology by Diff quick, apoptosis and necrosis by Annexin-V and TUNEL assays, and their chromatin integrity was assessed by Aniline blue and Toluidine blue staining, according to WHO guidelines. Results: The results revealed that: 1) the total number of motile sperms was increased by VD in both groups, but it was only significant in the asthenozoospermia group. 2) The progressive motility was increased with significant difference in both groups.3) Morphology of sperm did not show any changes due to VD in any of the groups. 4) Early apoptosis and necrosis of sperms were reduced in both groups, but the results of late apoptosis showed no statistical difference in these groups. 5) The percentage of positive toluidine blue was significantly decreased after using VD in the asthenozoospermia group. Conclusion: VD could improve motility, early apoptosis, and sperm necrosis, especially in asthenozoospermic men and it could be used for therapeutic opportunities.
Follicular fluid (FF) is essential for developing ovarian follicles. Besides the oocytes, FF has abundant undifferentiated somatic cells containing stem cell properties, which are discarded in daily medical procedures. Earlier studies have shown that FF cells could differentiate into primordial germ cells via forming embryoid bodies, which produced oocyte‐like cells (OLC). This study aimed at isolating mesenchymal stem cells (MSC) from FF and evaluating the impacts of bone morphogenetic protein 15 (BMP15) on the differentiation of these cells into OLCs. Human FF‐derived cells were collected from 78 women in the assisted fertilization program and cultured in human recombinant BMP15 medium for 21 days. Real‐time polymerase chain reaction and immunocytochemistry staining characterized MSCs and OLCs. MSCs expressed germline stem cell (GSC) markers, such as OCT4 and Nanog. In the control group, after 15 days, OLCs were formed and expressed zona pellucida markers (ZP2 and ZP3), and reached 20–30 µm in diameter. Ten days after induction with BMP15, round cells developed, and the size of OLCs reached 115 µm. A decrease ranged from 0.04 to 4.5 in the expression of pluripotency and oocyte‐specific markers observed in the cells cultured in a BMP15‐supplemented medium. FF‐derived MSCs have an innate potency to differentiate into OLCs, and BMP15 is effective in promoting the differentiation of these cells, which may give an in vitro model to examine germ cell development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.