In the market of cryptocurrency the Bitcoins are the first currency which has gain the significant importance. To predict the market price and stability of Bitcoin in Crypto-market, a machine learning based time series analysis has been applied. Time-series analysis can predict the future ups and downs in the price of Bitcoin. For this purpose we have used ARIMA, FBProphet, XG Boosting for time series analysis as a machine learning techniques. The parameters on the basis of which we have evaluated these models are Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and R 2 . We conduct experiments on these three techniques but after conducting time series analysis, ARIMA considered as the best model for forecasting Bitcoin price in the crypto-market with RMSE score of 322.4 and MAE score of 227.3. Additionally, this research can be helpful for investors of crypto-market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.