The expression of cyclin D1 is upregulated in various cancer cells by diverse mechanisms, such as increases in mRNA levels, the promotion of the translation by mammalian target of rapamycin complex 1 (mTORC1) signaling and the protein stabilization. We here show that sesaminol, a sesame lignan, reduces the expression of cyclin D1 with decreasing mRNA expression levels, inhibiting mTORC1 signaling and promoting proteasomal degradation. We subsequently generated sesaminol-immobilized FG beads to newly identify sesaminol-binding proteins. As a consequence, we found that adenine nucleotide translocase 2 (ANT2), the inner mitochondrial membrane protein, directly bound to sesaminol. Consistent with the effects of sesaminol, the depletion of ANT2 caused a reduction in cyclin D1 with decreases in its mRNA levels, mTORC1 inhibition and the proteasomal degradation of its protein, suggesting that sesaminol negatively regulates the function of ANT2. Furthermore, we screened other ANT2-binding compounds and found that the proliferator-activated receptor-γ agonist troglitazone also reduced cyclin D1 expression in a multifaceted manner, analogous to that of the sesaminol treatment and ANT2 depletion. Therefore, the chemical biology approach using magnetic FG beads employed in the present study revealed that sesaminol bound to ANT2, which may pleiotropically upregulate cyclin D1 expression at the mRNA level and protein level with mTORC1 activation and protein stabilization. These results suggest the potential of ANT2 as a target against cyclin D1-overexpressing cancers.
With increasing clinical demands for MEK inhibitors in cancer treatment, overcoming the resistance to MEK inhibitors is an urgent problem to be solved. Numerous reports have shown that MEK inhibition results in the activation of PI3K-Akt signaling, which may confer apoptotic resistance to MEK inhibitors. We here demonstrate that the blockade of the mevalonate pathway using the antilipidemic drug statins represses Akt activation following MEK inhibition and induces significant apoptosis when co-treated with CH5126766 or trametinib. These events were clearly negated by the addition of mevalonate or geranylgeranyl pyrophosphate, indicating that the protein geranylgeranylation is implicated in the apoptotic resistance to MEK inhibitors. Furthermore, mechanistically, the combined treatment of CH5126766 with statins upregulated TNF-related apoptosis-inducing ligand (TRAIL), which was dependent on inhibition of the mevalonate pathway and is involved in apoptosis induction in human breast cancer MDA-MB-231 cells. The present study not only revealed that the mevalonate pathway could be targetable to enhance the efficacy of MEK inhibitors, but also proposes that combinatorial treatment of MEK inhibitors with statins may be a promising therapeutic strategy to sensitize cancer cells to apoptosis.
Aspirin is one of the most promising over-the-counter drugs to repurpose for cancer treatment. In particular, aspirin has been reported to be effective against PIK3CA-mutated colorectal cancer (CRC); however, little information is available on how the PIK3CA gene status affects its efficacy. We found that the growth inhibitory effects of aspirin were impaired upon glutamine deprivation in PIK3CA-mutated CRC cells. Notably, glutamine dependency of aspirin-mediated growth inhibition was observed in PIK3CA-mutated cells but not PIK3CA wild type cells. Mechanistically, aspirin induced G1 arrest in PIK3CA-mutated CRC cells and inhibited the mTOR pathway, inducing the same phenotypes as glutamine deprivation. Moreover, our study including bioinformatic approaches revealed that aspirin increased the expression levels of glutaminolysis-related genes with upregulation of activating transcription factor 4 (ATF4) in PIK3CA-mutated CRC cells. Lastly, the agents targeting glutaminolysis demonstrated significant combined effects with aspirin on PIK3CA-mutated CRC cells. Thus, these findings not only suggest the correlation among aspirin efficacy, PIK3CA mutation and glutamine metabolism, but also the rational combinatorial treatments of aspirin with glutaminolysis-targeting agents against PIK3CA-mutated CRC.
Natural products have numerous bioactivities and are expected to be a resource for potent drugs. However, their direct targets in cells often remain unclear. We found that rabdosianone I, which is a bitter diterpene from an oriental herb for longevity, Isodon japonicus Hara, markedly inhibited the growth of human colorectal cancer cells by downregulating the expression of thymidylate synthase (TS). Next, using rabdosianone I-immobilized nano-magnetic beads, we identified two mitochondrial inner membrane proteins, adenine nucleotide translocase 2 (ANT2) and prohibitin 2 (PHB2), as direct targets of rabdosianone I. Consistent with the action of rabdosianone I, the depletion of ANT2 or PHB2 reduced TS expression in a different manner. The knockdown of ANT2 or PHB2 promoted proteasomal degradation of TS protein, whereas that of not ANT2 but PHB2 reduced TS mRNA levels. Thus, our study reveals the ANT2- and PHB2-mediated pleiotropic regulation of TS expression and demonstrates the possibility of rabdosianone I as a lead compound of TS suppressor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.