Probing deep regions of the lung using electrical impedance is very important considering the need for a low cost and simple technique, particularly for the low and medium income countries. Because of complexity and cost, Electrical Impedance Tomography is not suitable for this envisaged application. The simple Tetrapolar Impedance Measurement (TPIM) technique employing four electrodes is the age old technique for bioelectrical measurements. However, it has its limitations in respect of organ localisation and depth sensitivity using skin surface electrodes. Recently, a new 6-electrode TPIM with two current electrodes but two pairs of appropriately connected potential electrodes positioned on the front and back of the thorax, proposed by one of the authors, came with a promise. However, this work gave a qualitative proposal based on concepts of physics and lacked a quantitative evaluation. In order to evaluate the method quantitatively, the present work employed finite element method based COMSOL Multiphysics software and carried out simulation studies using this new 6-electrode TPIM and compared the results with those from 4-electrode TPIM, with electrodes applied either on the front or at the back of the thorax for the latter. Initially, it carried out a sensitivity distribution study using a simple rectangular volume conductor which showed that the 6-electrode TPIM gives better depth sensitivity throughout the lung region. Next it used a near life like thorax model developed by another of the authors earlier. Using this model, extensive studies were carried out to quantify the overall sensitivity over a target lung region, the contribution of the target lung to the total measured impedance, and several other parameters. Through these studies, the 6-electrode TPIM was established on a stronger footing for probing deep regions of the lungs.
Bio-Electrical impedance is of special interest in the detection and diagnosis of lung problems, particularly in the low and medium income countries. An age old simple technique employing four electrodes is known as ‘Tetra Polar Impedance Measurement (TPIM)’ but it cannot localize a particular zone of interest region. A new technique named as ‘Focused Impedance Method (FIM)’ was innovated by a Dhaka University group which gives high sensitivity in a localized zone of interest. Previously FIM was used from one side of the thorax which gave a rather limited information from the lungs, from shallow depths only. In order to get information from deeper regions of the lungs a new configuration of electrodes for FIM was proposed by the same group at Dhaka University which placed two electrodes at the front and two electrodes at the back of the thorax in a horizontal plane. It is expected that the degree of depth sensitivity would depend on electrode separation on both the sides. The electrode width may also have an effect. In order to study these quantitatively, COMSOL Multiphysics software was used to simulate the measurements in a rounded rectangular volume to represent a typical thorax, which was filled with isotonic saline. Electrode separations of 5cm, 10cm, 15cm and 20cm were studied while electrode widths studied were 0.15cm, 1cm and 3cm. The work supported the proposed new configuration of electrodes for FIM in that this method gives enhanced sensitivity throughout the depths of a lung and that for a thorax with a cross section of 33cm26cm, an electrode separation between 10cm and 15cm would give optimum results. For electrode width, the ones studied did not give any significant difference, however, the smallest (0.15cm) one appeared to give slightly better results. Bangladesh Journal of Medical Physics Vol.15 No.1 2022 P 43-54
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.