Efficient conversion of pentose sugars to ethanol is important for an economically viable lignocellulosic bioethanol process. Ten yeasts fermenting both D-xylose and L-arabinose were subjected to an adaptation process with L-arabinose as carbon source in a medium containing acetic acid. Four Meyerozyma caribbica-adapted strains were able to ferment L-arabinose to ethanol in the presence of 3 g/L acetic acid at 35°C. Meyerozyma caribbica Mu 2.2f fermented L-arabinose to produce 3.0 g/L ethanol compared to the parental strain with 1.0 g/L ethanol in the absence of acetic acid. The adapted M. caribbica Mu 2.2f strain produced 3.6 and 0.8 g/L ethanol on L-arabinose and D-xylose, respectively, in the presence of acetic acid while the parental strain failed to grow. In a bioreactor, the adapted M. caribbica Mu 2.2f strain produced 5.7 g/L ethanol in the presence of 3 g/L acetic acid with an ethanol yield and productivity of 0.338 g/g and 0.158 g/L/h, respectively, at a KLa value of 3.3 h−1. The adapted strain produced 26.7 g/L L-arabitol with a yield of 0.900 g/g at a KLa value of 4.9 h−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.