Temperature-sensitive cure kinetics based on bisphenol A oligomeric diglycidyl ether and branching diphenylmethane di-isocyanate, polymer aliphatic or lower molecular weight aromatic amines, and polypropylene and epoxy composites were examined. Polypropylene networks are formed initially, followed by amine hardeners interfering with epoxy oxirane rings to frame linear oligomers. Finally, the system is formed by a reaction between amines obtained in the second phase and epoxy oxirane rings during the curing step. This three-stage treatment was illustrated. The activation energy was calculated using the Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose isoconversational approaches to cure degree. The Ea-to-
α
correlation was determined using these approaches, revealing that the research curing systems exhibited autocatalytic effects. Among the materials studied, compounds with low molecular weight aromatic amines had the strongest and longest-lasting tensile characteristics. There are numerous advantages to slow curing and discrete stages of composite creation, including better mechanical properties.
Aluminium metal matrix composite is developed using powder metallurgy, with number of different operational factors considered. The three most important operational factors are sintering time, sintering temperature, and compaction pressure. Investigations are conducted using L9 orthogonal array as the experimental design. Density, Vickers hardness, and compressive strength are determined through experiments. The S/N ratio based on Taguchi’s law and a number of anomalies accomplished were used to determine the effect of individual input parameters (ANOVA). The main effect plots identified the optimal parameter settings for obtaining a less density, a higher hardness, and a higher compressive strength. In addition, the ANOVA analysis confirmed that the best metal matrix composite material is produced at the optimal sintering time and average temperature and compaction pressure for generally classified levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.