ROR1 is a receptor tyrosine kinase (RTK) recently identified to be overexpressed at the gene and protein levels in chronic lymphocytic leukemia (CLL). Monoclonal antibodies (MAbs) against RTKs have been successfully applied for therapy of solid tumors. We generated five MAbs against the Ig (n ¼ 1), cysteine-rich (CRD) (n ¼ 2) and kringle (KNG) (n ¼ 2) domains, respectively, of the extracellular part of ROR1. All CLL patients (n ¼ 20) expressed ROR1 on the surface of the leukemic cells. A significantly higher frequency of ROR1 expression was found in patients with progressive versus non-progressive disease, and in those with unmutated versus mutated IgVH genes. All five MAbs alone induced apoptosis in the absence of complement or added effector cells (Annexin-V and MTT, as well as cleavage of poly-(ADP ribose)-polymerase, caspase-8 and caspase-9) of CLL cells but not of normal B cells. Most effective were MAbs against CRD and KNG, significantly superior to rituximab (Po0.005). Cross-linking of anti-ROR1 MAbs using the F(ab 0 ) 2 fragments of anti-Fc antibodies significantly augmented apoptosis. Two of the MAbs induced complement-dependent cytotoxicity (CDC) similar to that of rituximab and one anti-ROR1 MAb (KNG) (IgG1) showed killing activity by antibody-dependent cellular cytotoxicity. The identified ROR1 epitopes may provide a basis for generating human ROR1 MAbs for therapy.
Retrograde flow of menstrual blood cells during menstruation is considered as the dominant theory for the development of endometriosis. Moreover, current evidence suggests that endometrial-derived stem cells are key players in the pathogenesis of endometriosis. In particular, endometrial stromal stem cells have been suggested to be involved in the pathogenesis of this disease. Here, we aimed to use menstrual blood, as a novel source of endometrial stem cells, to investigate whether stromal stem cells from endometriosis (E-MenSCs) and non-endometriosis (NE-MenSCs) women differed regarding their morphology, CD marker expression pattern, proliferation, invasion and adhesion capacities and their ability to express certain immunomodulatory molecules. E-MenSCs were morphologically different from NE-MenSCs and showed higher expression of CD9, CD10 and CD29. Furthermore, E-MenSCs had higher proliferation and invasion potentials compared with NE-MenSCs. The amount of indoleamine 2,3-dioxygenase-1 (IDO1) and cyclooxygenase-2 (COX-2) in E-MenSCs co-cultured with allogenic peripheral blood mononuclear cells (PBMCs) was shown to be higher both at the gene and protein levels, and higher IDO1 activity was detected in the endometriosis group. However, NE-MenSCs revealed increased concentrations of forkhead transcription factor-3 (FOXP3) when compared with E-MenSCs. Nonetheless, interferon (IFN)-γ, Interleukin (IL)-10 and monocyte chemoattractant protein-1 (MCP-1) levels were higher in the supernatant of E-MenSCs-PBMC co-cultures. Here, we showed that there are inherent differences between E-MenSCs and NE-MenSCs. These findings propose the key role MenSCs could play in the pathogenesis of endometriosis and further support the retrograde and stem cell theories of endometriosis. Hence, considering its renewable and easily available nature, menstrual blood could be viewed as a reliable and inexpensive material for studies addressing the cellular and molecular aspects of endometriosis.
The receptor tyrosine kinase ROR1 has been shown to be overexpressed in chronic lymphocytic leukemia (CLL). The aim of this study was to further characterize the expression of ROR1 and the other member of the ROR family, ROR2, in other lymphoid and myeloid malignancies. Normal white blood cells and reactive lymph nodes were negative for ROR1 and ROR2. A significantly high and uniform surface expression of ROR1 was found in CLL/hairy cell leukemia (HCL) compared to mantle cell lymphoma (MCL), marginal zone lymphoma (MZL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), myelomas, acute lymphoblastic leukemia (ALL) and myeloid leukemias (p = 0.02 to < 0.001). The lowest proportion of ROR1+ cells was seen in FL, whereas CLL, HCL and CML had significantly higher numbers of ROR1+ cells. Longitudinal follow-up of individual patients with CLL revealed that ROR1+ cells remained stable over time in non-progressive patients, but increased when the disease progressed (p < 0.05). Thus, a variable staining pattern of ROR1 ranging from very high (CLL, HCL) and high (CML) to intermediate (myeloma and DLBCL) or low (FL) was noted. ROR2 was not detected in hematological malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.