The framework of Baikov–Gazizov–Ibragimov approximate symmetries has proven useful for many examples where a small perturbation of an ordinary or partial differential equation (ODE, PDE) destroys its local exact symmetry group. For the perturbed model, some of the local symmetries of the unperturbed equation may (or may not) re-appear as approximate symmetries. Approximate symmetries are useful as a tool for systematic construction of approximate solutions. For algebraic and first-order differential equations, to every point symmetry of the unperturbed equation, there corresponds an approximate point symmetry of the perturbed equation. For second and higher-order ODEs, this is not the case: a point symmetry of the original ODE may be unstable, that is, not have an analogue in the approximate point symmetry classification of the perturbed ODE. We show that such unstable point symmetries correspond to higher-order approximate symmetries of the perturbed ODE and can be systematically computed. Multiple examples of computations of exact and approximate point and local symmetries are presented, with two detailed examples that include a fourth-order nonlinear Boussinesq equation reduction. Examples of the use of higher-order approximate symmetries and approximate integrating factors to obtain approximate solutions of higher-order ODEs are provided.
The frameworks of Baikov–Gazizov–Ibragimov (BGI) and Fushchich–Shtelen (FS) approximate symmetries are used to study symmetry properties of partial differential equations with a small parameter. In general, it is shown that unlike the case of ordinary differential equations (ODEs), unstable BGI point symmetries of unperturbed partial differential equations (PDEs) do not necessarily yield local approximate symmetries for the perturbed model. While some relations between the BGI and FS approaches can be established, the two methods yield different approximate symmetry classifications. Detailed classifications are presented for two nonlinear PDE families. The second family includes a one-dimensional wave equation describing the wave motion in a hyperelastic material with a single family of fibers. For this model, approximate symmetries can be used to compute approximate closed-form solutions. Wave breaking times are found numerically and using the approximate solutions, which yield comparable results.
We find Baikov-Gazizov-Ibragimov approximate point symmetries of the second-order Boussinesq ODE, and we find the higher-order approximate symmetries corresponding to the unstable point symmetries (the point symmetries that disappear fron the classification of the BGI approximate point symmetries) of the unperturbed equation. Approximate local symmetries are used to construct a general approximate solution of the Boussinesq ODE. We use approximate integrating factors to find a general approximate solution of the Benjamin-Bona-Mahony ODE reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.